Coefficients Revisited

Overview

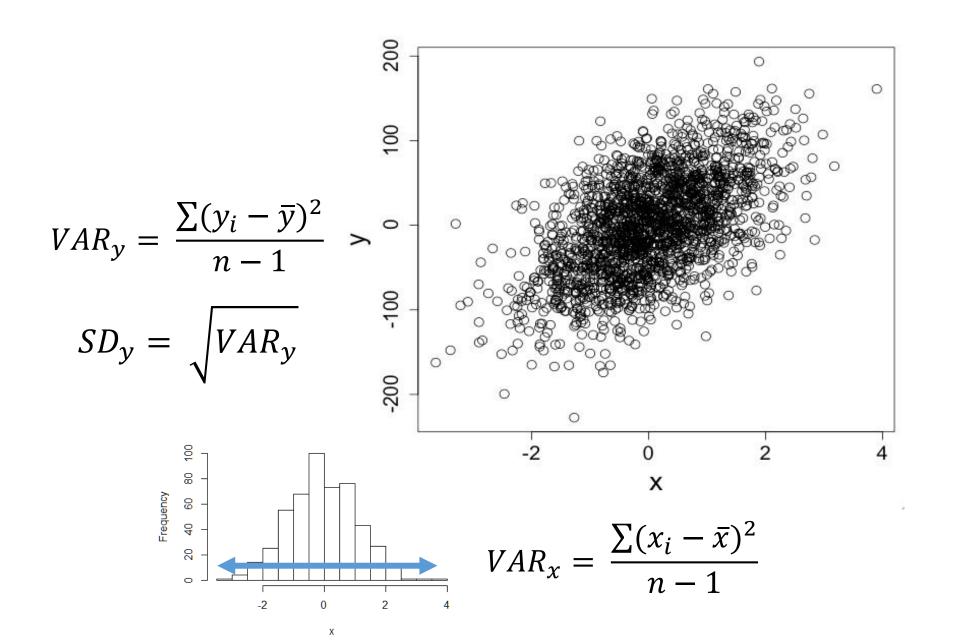
1. Rules of Coefficients

2. Range Standardization

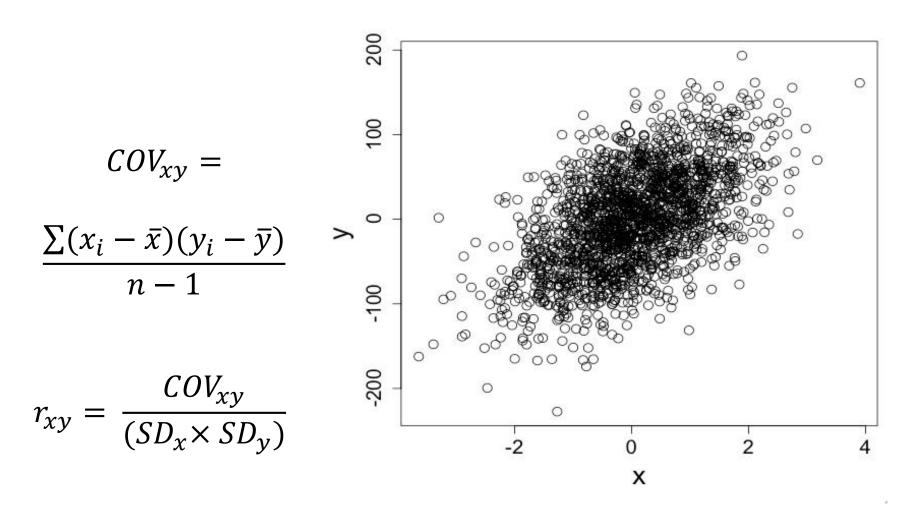
3. GLM (Logistic Regression)

4. GLM (Poisson Regression)

1.1 Coefficients. Covariance and correlation

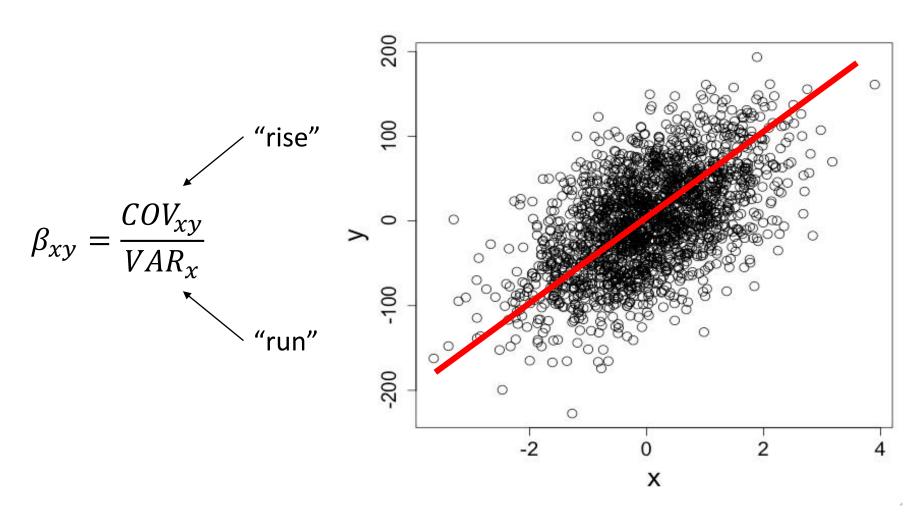


1.1 Coefficients. Covariance and correlation



Covariances *are* correlations when variables are standardized (Z-transformed: subtract the mean and divide by the SD)

1.1 Coefficients. Covariance and correlation



- Unstandardized coefficient = absolute strength of the pathway
 - "An 1 unit change in X results in some unit change in Y"

1.1 Coefficients. Standardization

- Standardized coefficient = relative strength of the pathway (correlation)
 - "A 1 standard deviation change in X results in some standard deviation change in Y"

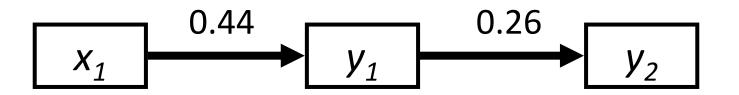
$$b_{xy} = \beta_{xy} * \frac{SD_x}{SD_y} = \frac{COV_{xy}}{(SD_x \times SD_y)} * \frac{SD_x}{SD_y} = \frac{COV_{xy}}{SD_y} = r_{xy}$$

1.1 Coefficients. Standardization

Unstandardized	Standardized
Good for prediction: coefficients are in raw units	Good for ranking: coefficients are in equivalent units
Has direct real world meaning	Less clear real world meaning
Can be compared across pathways or models that have identical units	Can be compared across all pathways in the same model and across model when population variances are not different (otherwise scaling is not equivalent)

1.1 Coefficients. Rule #3 of path coefficients

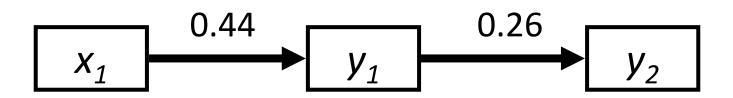
Third Rule of Path Coefficients: strength of a compound path is the product of the (standardized) coefficients along the path.



If the indirect path from x_1 to y_2 equals the correlation between x_1 and y_2 , we say x_1 and y_2 are conditionally independent.

1.1 Coefficients. Rule #3 of path coefficients

What does it mean when two separated variables are *not* conditionally independent?

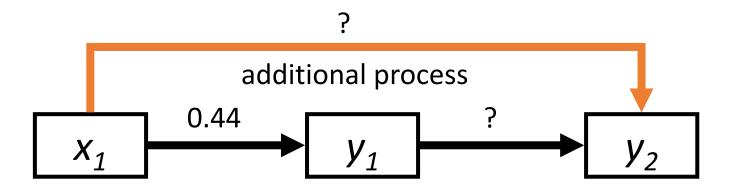


0.44 * 0.26 = 0.11, which is <u>not equal</u> to $r_{x,y2}$ = 0.31

	<i>X</i> ₁	<i>y</i> ₁	<i>y</i> ₂
x ₁	1.0		-
y_1	0.44	1.0	
<i>y</i> ₂	0.31	0.26	1.0

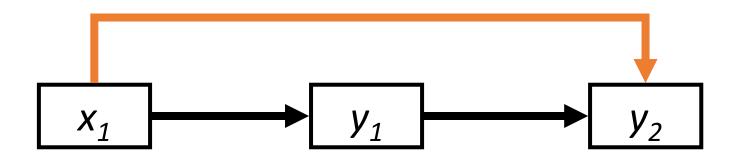
1.1 Coefficients. Rule #4 of path coefficients

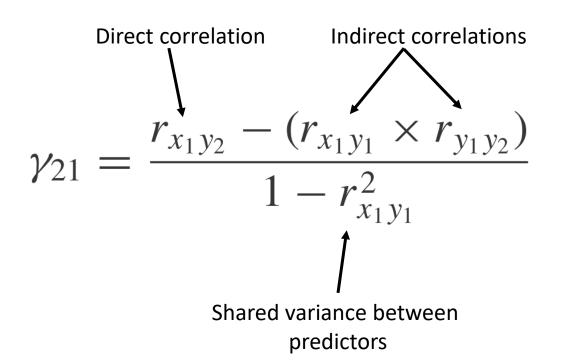
The inequality implies that the true model is:



Fourth Rule of Path Coefficients: when variables are connected by more than one causal pathway, the path coefficients are "partial" regression coefficients.

1.1 Coefficients. What is a partial coefficient?

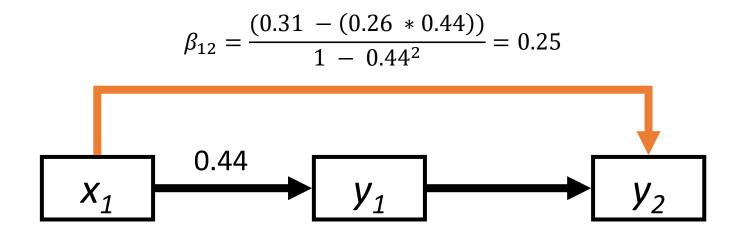




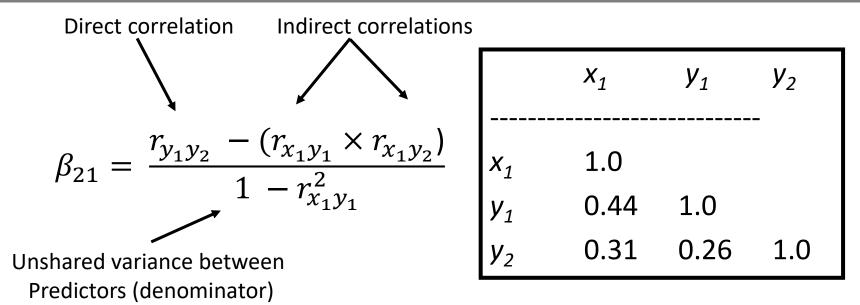
1.1 Coefficients. What is a partial coefficient?

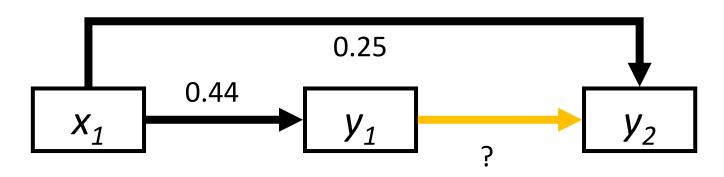
$$\gamma_{21} = \frac{r_{x_1 y_2} - (r_{x_1 y_1} \times r_{y_1 y_2})}{1 - r_{x_1 y_1}^2}$$

	<i>X</i> ₁	<i>y</i> ₁	<i>y</i> ₂
x ₁	1.0		-
<i>y</i> ₁	0.44	1.0	
<i>y</i> ₂	0.31	0.26	1.0



1.1 Coefficients. What is a partial coefficient?

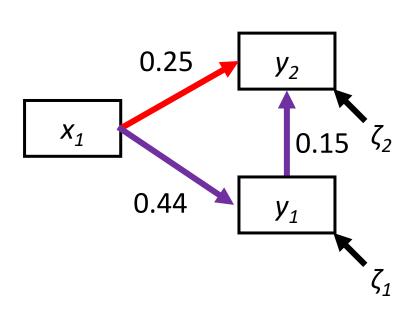




$$\gamma_{21} = \frac{(0.26 - (0.44 * 0.31))}{1 - 0.44^2} = 0.15$$

1.1 Coefficients. Rule #8 of path coefficients

Eighth Rule of Path Coefficients: sum of all pathways between two variables (directed and undirected) equals the correlation.



Total Effects:

	<i>X</i> ₁	<i>y</i> ₁	<i>y</i> ₂
x ₁	1.0		
$\boldsymbol{y_1}$	0.44	1.0	
<i>y</i> ₂	0.31	0.26	1.0

0.25 + 0.44 * 0.15 = 0.31

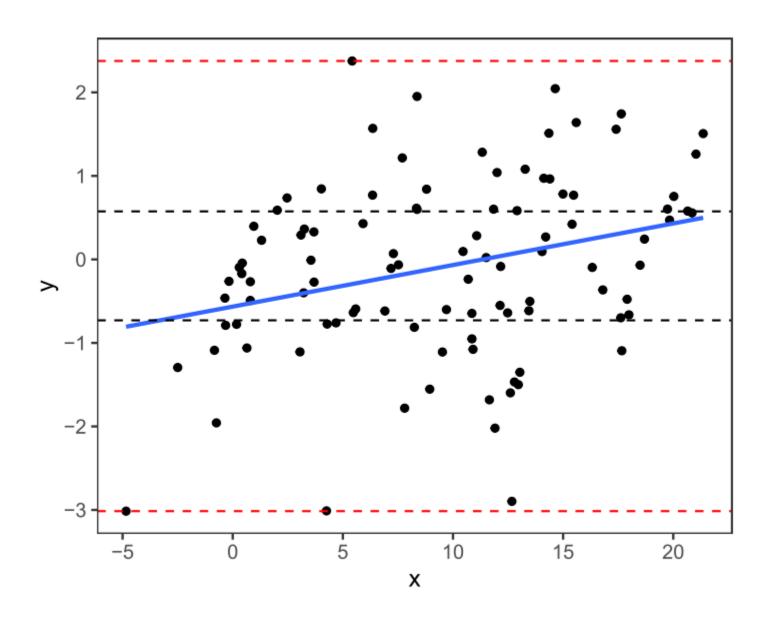
Range standardization puts coefficients in units of range:

$$b = B_{xy} * \frac{(\max(x) - \min(x))}{(\max(y) - \min(y))}$$

- Interpreted as a moving x along its range would result in a % change in y along its range
- Good for binary or ordinal predictors ("moving x from off to on" or "moving x from one state to the next")

- Relevant range standardization can define a custom range for x and y
 - More meaningful in certain contexts (e.g., "a % reduction in x leads to a % reduction in y")
- Good for contextualizing variables with very different variances/distributions where 1 SD may equate to very different proportions of the total range
- Only in piecewiseSEM

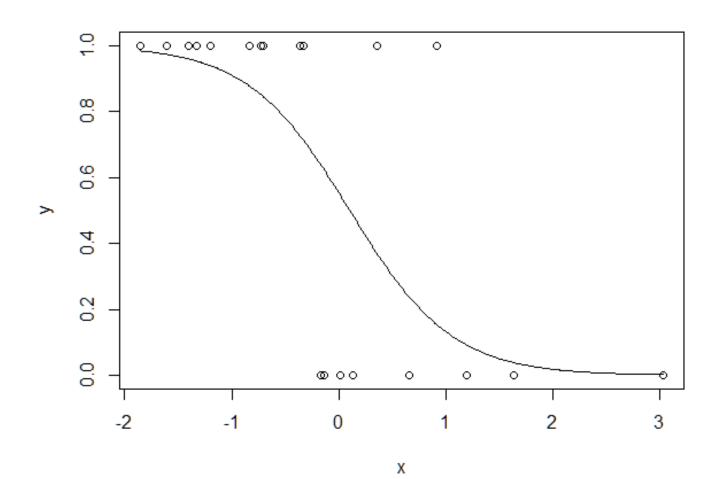
```
# Generate fake data
set.seed(8)
data <- data.frame(y = rnorm(100))</pre>
data$x <- data$y * 2 + runif(100, 0, 20)
# Fit model
model <- lm(y \sim x, data)
piecewiseSEM::coefs(model, standardize = "range")
Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
    x 0.0498 0.0161 98 3.0861 0.0026 0.242 **
# As you move along the entire range of x, you move along 25% of the
range of y
```



```
# Specify relevant range (20% increase in x)
piecewiseSEM::coefs(model, standardize = list(x = c(min(datax),
max(data$x)*0.20)))
 Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
                              0.0161 98 3.0861 0.0026
                 x 0.0498
                                                              0.0842 **
Warning message:
Relevant range not specified for variable 'y'. Using observed range instead
# a 20% increase in x2 leads to an 8.4% increase in y
```

1.3 GLM (Logistic Regression)

Binary responses are not a linear function of x....



- 1. The random component: specifying conditional distribution of values for the response variable y, e.g., $y \sim dbin(\mu)$.
- 2. <u>Linear predictors</u>: made up of *j* predictor (*x*) variables.

$$\eta = \sum x_j \beta_j$$

3. <u>Link function</u>: $g(\cdot)$ that transforms the expectation of the response variable to the linear predictors.

$$\eta_i = g(\mu_i)$$

$$\mu_i \stackrel{\text{def}}{=} E(y_i)$$

Logit link

$$logit(\mu_i) = log\left(\frac{\mu_i}{1 - \mu_i}\right) = log\left(\frac{P(y=1)}{P(y=0)}\right) = \sum_{j=1}^{p} \beta_j x_{ij}$$

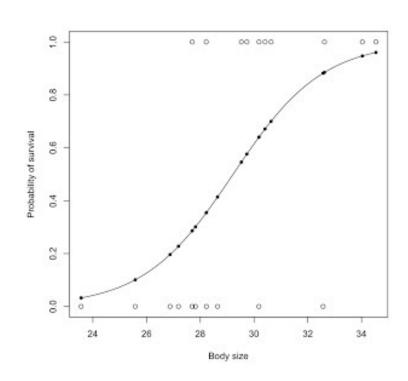
2. Probit link

$$probit(\mu_i) = \Phi^{-1}(\mu_i) = \sum_{j=1}^p \beta_j x_{ij}$$

PROBLEM: the relationship between y and x is non-linear = the coefficients are on a link-transformed y^* (linear scale)

So... the standard deviation of y is different than the standard deviation of y^* . How do we get $sd(y^*)$?

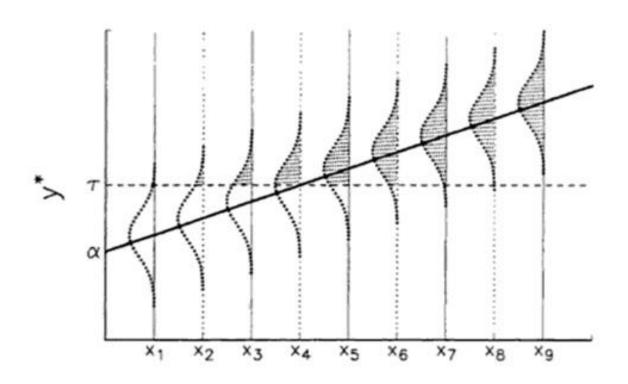
$$b = B_{xy*} * \frac{sd(x)}{sd(y^*)}$$

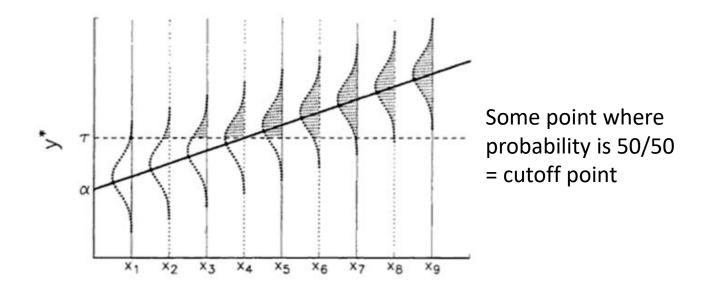


Imagine that every sample has some underlying probability of observing a 0 or a 1

E.g., sampling fish along an estuarine gradient

Arrange probabilities along x = linear change in mean probability





In this model, the latent variable y^* is linked to the observed binary values of y via the following relationship:

$$y_i = \begin{cases} 1 & if \ y_i^* > \tau \\ 0 & if \ y_i^* < \tau \end{cases}$$

and τ is a cutpoint or threshold (generally 0.5)

A latent y^* is linearly related to predictors through a linear model

$$y_i^* = \mathbf{x}_i \mathbf{\beta}_i + \varepsilon_i.$$

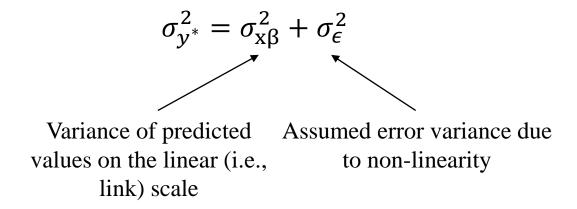
Because y* is unobserved (latent) we have no idea about its mean or variance

If we assume it follows a certain distribution (e.g., binomial) then we have theoretical error variances available for different link functions:

Logit =
$$Var(\varepsilon) = \pi^2/3$$

Probit =
$$Var(\epsilon) = 1$$

If we assume those error variances, then the variance of y^* :

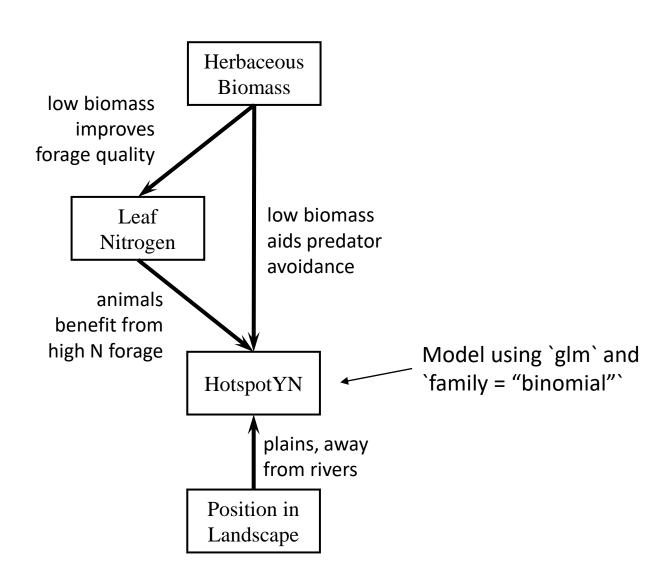


Taking the square-root yields of the sd of y, which can be used in standardization

Landscape-scale analyses suggest both nutrient and antipredator advantages to Seregenti herbivore hotspots

133 sites surveyed from 2005-2007 & classified into 'hotspots' (grazers present 80% of time, grazing evident, dung present)

1.3. Logistic Example. Anderson & Grace



```
# read in data
anderson <- read.csv("anderson.csv")</pre>
# construct glm
anderson_glm <- glm(hotspotyN ~ leafN + biomass.kg + landscape,
"binomial", anderson)
summary(anderson_glm)
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.4026 4.8352 -2.565 0.01031 *
       6.6867 2.7818 2.404 0.01623 *
leafN
biomass.kg -7.7838 3.5694 -2.181 0.02921 *
landscape 1.3600 0.4955 2.745 0.00605 **
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
# get fitted values of linear y*
preds <- predict(anderson_glm, type = "link") # linear predictions</pre>
# latent theoretic
sd.ystar <- sqrt(var(preds) + (pi^2)/3) # for default logit-link
# get coefficients from GLM output
betas <- summary(anderson_qlm)$coefficients[2:4, 1]
# get vector of sd's of x's
sd.x <- apply(anderson[, names(betas)], 2, sd)</pre>
```

```
# conduct SEM
anderson_sem <- psem(</pre>
  glm(hotspotYN ~ leafN + biomass.kg + landscape, "binomial",
anderson),
  lm(leafN ~ biomass.kg, anderson),
  data = anderson
# get summary output
summary(anderson_sem)
Structural Equation Model of anderson_sem
call:
 hotspotYN ~ leafN + biomass.kg + landscape
 leafN ~ biomass.kg
   AIC
4.617
```

```
Tests of directed separation:
          Independ.Claim Test.Type DF Crit.Value P.Value
 leafN ~ landscape + ... coef 64
                                         -1.0718 0.2878
Global goodness-of-fit:
Chi-Squared = 1.192 with P-value = 0.275 and on 1 degrees of freedom
Fisher's C = 2.491 with P-value = 0.288 and on 2 degrees of freedom
```

Coefficients:

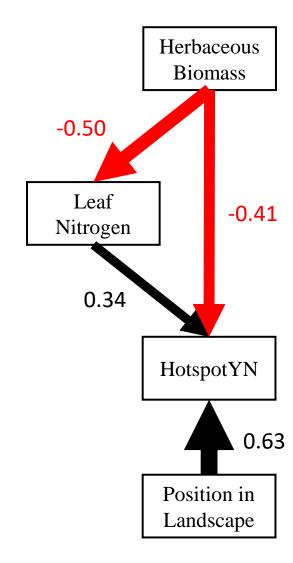
```
Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
                            2.7818 63
            leafn
                   6.6867
                                        2.4037 0.0162
                                                          0.3399
hotspotyN
hotspotyN biomass.kg -7.7838
                            3.5694 63 -2.1807 0.0292
                                                          -0.4050
hotspotYN landscape 1.3600
                            0.4955 63 2.7449 0.0061
                                                         0.6332
                                                                 **
   leafN biomass.kg -0.4880
                            0.1050 65 -4.6486 0.0000
                                                          -0.4995 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05

Individual R-squared:

Response method R.squared hotspotyN nagelkerke 0.61 leafN none 0.25

<u>Indirect effect:</u>
-0.50 * 0.34 = -0.17



- As herbaceous biomass goes up, it reduces the chances of being a hotspot (reduced visibility)
- It also dilutes forage quality, further reducing the chances of being a hotspot
- The direct effect is ~2x
 that of the indirect effect

1.3. Logistic Regression. OE Approach

If non-linear y is truly discrete... (aka, not latent continuous but actually binary or continuous, such as counts)

For GLM models we can compute an approximate R^2 as the squared correlation between observed and fitted values (both of which we know)

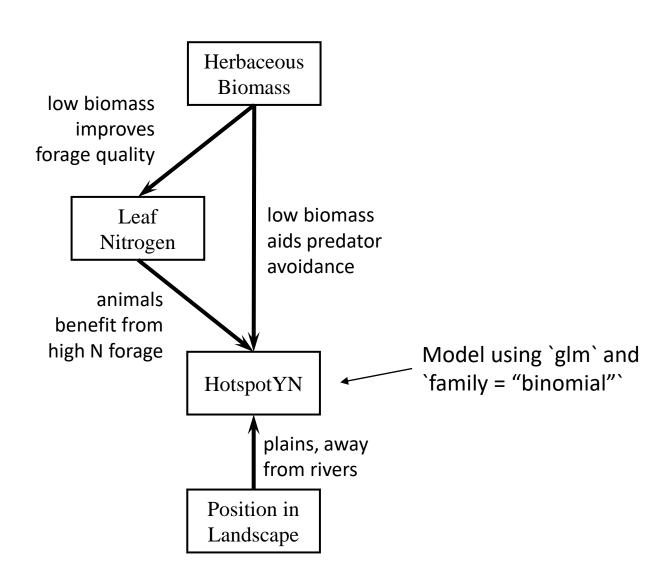
We also know the variance of the fitted (linear) values $(\sigma_{\hat{V}}^2)$

We can use this equation to solve for the variance of the non-linear *y*:

$$R^2 = \frac{\sigma_{\widehat{y}}^2}{\sigma_{y}^2}$$
 such that $\sigma_{y}^2 = \frac{\sigma_{\widehat{y}}^2}{R^2}$

Where we can take the square-root to get the sd(y)

1.3. Logistic Example. Anderson & Grace



```
# get sd of fitted values
preds <- predict(anderson_glm, type = "link")</pre>
# get sd based on observed variance
R2 <- cor(anderson$hotspotYN, predict(anderson_glm, type =
"response"))^2
# observed empirical sd
sd.yhat <- sqrt(var(preds)/R2)</pre>
# get coefficients
betas <- summary(anderson_glm)$coefficients[2:4, 1]
# get vector of sd's of x's
sd.x <- apply(anderson[, names(betas)], 2, sd)</pre>
# get OE standardized betas
(OE_betas <- betas * (sd.x/sd.yhat))
leafN biomass.kg landscape
 0.2637846 -0.3142830 0.4913118
```

```
# get observation empirical standardization
coefs(anderson_glm, standardize.type = "Menard.OE")
  Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
1 hotspotYN
              leafN
                   6.6867 2.7818 63 2.4037 0.0162
                                                           0.2638
2 hotspotYN biomass.kg -7.7838 3.5694 63 -2.1807 0.0292
                                                           -0.3143
3 hotspotyN landscape 1.3600
                             0.4955 63 2.7449 0.0061 0.4913 **
# compare to latent linear approach
coefs(anderson_glm, standardize.type = "latent.linear") # default
Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
              leafn
                     6.6867 2.7818 63
                                          2.4037 0.0162
1 hotspotyN
                                                            0.3399
2 hotspotyN biomass.kg -7.7838 3.5694 63 -2.1807 0.0292
                                                           -0.4050
3 hotspotyN landscape 1.3600
                             0.4955 63 2.7449 0.0061 0.6332 **
# standardized coefs are smaller (since not incorporating binomial
distribution-specific error variance in the denominator of sd(y))
```

1.3. Logistic Example. Conclusions

- Both forms of standardization allow for fair comparison of effect sizes and calculation of indirect effects
- Is binary response generated by underlying probability? = latent theoretic. If not? = observation empirical
- Observation-empirical approach tends to yield lower standardized coefficients than the latent theoretic
 - Linear approximation (R^2) of a non-linear process = dampening of signal

1.4 GLM (Poisson Regression)

1.4. Poisson Example. Observation Empirical

- If response are true counts, observation empirical can be extended to other distributions (Poisson, negative binomial)
- These other distributions have no theoretical variance (like binomial)
- "Go ahead, log-transform count data" (Ives 2015)
 - Compare standardized coefficients from LM fit to log(y) vs.
 GLM fit to Poisson distribution to see how close we can get use this OE approach

1.4. Poisson Example.

```
# Generate Poisson distributed data
set.seed(100)
count_data <- data.frame(y = rpois(100, 10))</pre>
count_data$x <- count_data$y * runif(100, 0, 5)</pre>
# Fit log-transformed response using LM and extract standardized
coefficient
lm_model <- lm(log(y) ~ x, count_data)</pre>
stdCoefs(lm_model)$Std.Estimate
Γ17 0.5346
with(count_data, cor(x, log(y))) # same as correlation
[1] 0.5345506
```

1.4. Poisson Example.

```
# fit GLM and extract coefficient (link-scale)
glm_model2 \leftarrow glm(y \sim x, family = poisson(link = "log"), count_data)
coef(qlm_model2)[2]
0.01204693
# compute observation empirical sd by hand
R2 <- cor(count_data$y, predict(glm_model2, type = "response"))^2
sd.yhat <- sqrt(var(predict(glm_model2, type = "link"))/R2)</pre>
coef(glm_model2)[2] * sd(count_data$x)/sd.yhat
Χ
0.5695438
# get from coefs
stdCoefs(glm_model2)$Std.Estimate
[1] 0.5695438
# compare to LM model r.squared
sqrt(summary(lm_model)$r.squared)
[1] 0.5345506
```

1.4. Poisson Example. Observation Empirical

- Standardized coefficient from log-transformed LM *very* similar to GLM fit with a log-link (differences due to under-the-hood machinery)
- Extends to negative binomial as well
- Should be link-invariant (exercise: repeat with sqrt-link)
- Other distributions (beta, gamma, etc.) have multiple parameters that denote the shape of the relationship → still working on how to extend this observation empirical approach