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1.1 Coefficients. Covariance and correlation
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1.1 Coefficients. Covariance and correlation

𝐶𝑂𝑉𝑥𝑦 =

σ(𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

𝑛 − 1

𝑟𝑥𝑦 =
𝐶𝑂𝑉𝑥𝑦

(𝑆𝐷𝑥× 𝑆𝐷𝑦)

Covariances are correlations when variables are standardized 
(Z-transformed: subtract the mean and divide by the SD)



1.1 Coefficients. Covariance and correlation

𝛽𝑥𝑦 =
𝐶𝑂𝑉𝑥𝑦
𝑉𝐴𝑅𝑥

“rise”

“run”

• Unstandardized coefficient = absolute strength of the pathway

• “ An 1 unit change in X results in some unit change in Y ”



1.1 Coefficients. Standardization

• Standardized coefficient = relative strength of the pathway 
(correlation) 

• “ A 1 standard deviation change in X results in some
standard deviation change in Y ”

𝑏𝑥𝑦 = 𝛽𝑥𝑦 ∗
𝑆𝐷𝑥
𝑆𝐷𝑦

=
𝐶𝑂𝑉𝑥𝑦

(𝑆𝐷𝑥× 𝑆𝐷𝑦)
∗
𝑆𝐷𝑥
𝑆𝐷𝑦

=
𝐶𝑂𝑉𝑥𝑦

𝑆𝐷𝑦
= 𝑟𝑥𝑦



1.1 Coefficients. Standardization

Unstandardized Standardized

Good for prediction:
coefficients are in raw units

Good for ranking: coefficients 
are in equivalent units

Has direct real world meaning Less clear real world meaning

Can be compared across 
pathways or models that have 
identical units

Can be compared across all 
pathways in the same model 
and across model when 
population variances are not 
different (otherwise scaling is 
not equivalent)



1.1 Coefficients. Rule #3 of path coefficients

Third Rule of Path Coefficients: strength of a compound 
path is the product of the (standardized) coefficients along 
the path.

x1 y1 y2

0.26

If the indirect path from x1 to y2 equals the correlation 
between x1 and y2, we say x1 and y2 are 

conditionally independent. 

0.44



1.1 Coefficients. Rule #3 of path coefficients

What does it mean when two separated variables 

are not conditionally independent? 

0.44 * 0.26 = 0.11, which is not equal to rx,y2 = 0.31

x1 y1 y2

0.260.44

x1 y1 y2

-----------------------------

x1 1.0

y1 0.44 1.0

y2 0.31 0.26 1.0



1.1 Coefficients. Rule #4 of path coefficients

The inequality implies that the true model is: 

x1 y1 y2

Fourth Rule of Path Coefficients: when variables are

connected by more than one causal pathway, the path 

coefficients are "partial" regression coefficients. 

additional process

0.44 ?

?



1.1 Coefficients. What is a partial coefficient?

Direct correlation Indirect correlations

Shared variance between 
predictors

x1 y1 y2



1.1 Coefficients. What is a partial coefficient?

x1 y1 y2

0.44

𝛽12 =
(0.31 − 0.26 ∗ 0.44 )

1 − 0.442
= 0.25

x1 y1 y2

-----------------------------

x1 1.0

y1 0.44 1.0

y2 0.31 0.26 1.0



1.1 Coefficients. What is a partial coefficient?

x1 y1 y2

0.44

?

𝛾21 =
(0.26 − 0.44 ∗ 0.31 )

1 − 0.442
= 0.15

x1 y1 y2

-----------------------------

x1 1.0

y1 0.44 1.0

y2 0.31 0.26 1.0

0.25

𝛽21 =
𝑟𝑦1𝑦2 − (𝑟𝑥1𝑦1 × 𝑟𝑥1𝑦2)

1 − 𝑟𝑥1𝑦1
2

Direct correlation Indirect correlations

Unshared variance between 
Predictors (denominator)



1.1 Coefficients. Rule #8 of path coefficients

Eighth Rule of Path Coefficients: sum of all pathways 
between two variables (directed and undirected) 
equals the correlation.

y1

x1

y2

ζ1

ζ2

0.25

0.44

0.15

Total Effects:

0.25 + 0.44 * 0.15 = 0.31

x1 y1 y2

-------------------------------

x1 1.0

y1 0.44 1.0

y2 0.31 0.26 1.0



1.2 Range 
Standardization



1.2. Range Standardization.

• Range standardization puts coefficients in units of 
range:

• Interpreted as a moving x along its range would result 
in a % change in y along its range

• Good for binary or ordinal predictors (“moving x from 
off to on” or “moving x from one state to the next”)

𝑏 = 𝐵𝑥𝑦 ∗
(max 𝑥 − min 𝑥 )

(max 𝑦 −min 𝑦 )



1.2. Range Standardization.

• Relevant range standardization can define a custom 
range for x and y
• More meaningful in certain contexts (e.g., “a % reduction in 

x leads to a % reduction in y”)

• Good for contextualizing variables with very different 
variances/distributions where 1 SD may equate to 
very different proportions of the total range

• Only in piecewiseSEM



1.2. Range Standardization.

# Generate fake data
set.seed(8)

data <- data.frame(y = rnorm(100))

data$x <- data$y * 2 + runif(100, 0, 20)

# Fit model
model <- lm(y ~ x, data)

piecewiseSEM::coefs(model, standardize = "range")

Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
1 y         x   0.0498    0.0161 98     3.0861  0.0026        0.242 **

# As you move along the entire range of x, you move along 25% of the 
range of y



1.2. Range Standardization.



1.2. Range Standardization.

# Specify relevant range (20% increase in x)
piecewiseSEM::coefs(model, standardize = list(x = c(min(data$x), 
max(data$x)*0.20)))

Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
1        y         x   0.0498    0.0161 98     3.0861  0.0026       0.0842 **
Warning message:
Relevant range not specified for variable 'y'. Using observed range instead 

# a 20% increase in x2 leads to an 8.4% increase in y



1.3 GLM (Logistic 
Regression)



1.3. Logistic Regression. Components

Binary responses are not a linear function of x….



1.3. Logistic Regression. Components

1. The random component: specifying conditional distribution of values for 
the response variable y, e.g., y ~ dbin(μ).

2. Linear predictors: made up of j predictor (x) variables.

𝜂 =෍𝑥𝑗𝛽𝑗

3. Link function: g(∙) that transforms the expectation of the response 
variable to the linear predictors. 

𝜂𝑖 = 𝑔 𝜇𝑖

𝜇𝑖 ≝ 𝐸(𝑦𝑖)



1.3. Logistic Regression. Components

1. Logit link

𝑙𝑜𝑔𝑖𝑡 𝜇𝑖 = 𝑙𝑜𝑔
𝜇𝑖

1 − 𝜇𝑖
= 𝑙𝑜𝑔

𝑃(𝑦 = 1)

𝑃(𝑦 = 0)
=෍

𝑗=1

𝑝

𝛽𝑗𝑥𝑖𝑗

2. Probit link

𝑝𝑟𝑜𝑏𝑖𝑡 𝜇𝑖 = Φ−1(𝜇𝑖) =෍

𝑗=1

𝑝

𝛽𝑗𝑥𝑖𝑗



1.3. Logistic Regression. Components

PROBLEM: the relationship between y and x is non-linear = the 
coefficients are on a link-transformed y* (linear scale)

So… the standard deviation of y is different than the standard 
deviation of y*. How do we get sd(y*)??

𝑏 = 𝐵𝑥𝑦∗ ∗
𝑠𝑑(𝑥)

𝑠𝑑(𝑦∗)



1.3. Logistic Regression. Latent theoretic approach

Imagine that every sample has some underlying probability of 
observing a 0 or a 1

E.g., sampling fish along an estuarine gradient

Arrange probabilities along x = linear change in mean probability



1.3. Logistic Regression. Latent theoretic approach

In this model, the latent variable y* is linked to the observed binary 
values of y via the following relationship:

𝑦𝑖 = ቊ
1 𝑖𝑓 𝑦𝑖

∗ > 𝜏

0 𝑖𝑓𝑦𝑖
∗ < 𝜏

and τ is a cutpoint or threshold (generally 0.5)

Some point where 
probability is 50/50 
= cutoff point



1.3. Logistic Regression. Latent theoretic approach

A latent y* is linearly related to predictors through a linear model

𝑦𝑖
∗ = 𝐱𝑖𝛃𝑖 + 𝜀𝑖.

Because y* is unobserved (latent) we have no idea about its mean 
or variance

If we assume it follows a certain distribution (e.g., binomial) then 
we have theoretical error variances available for different link 
functions:

Logit = Var(ε) = π2/3

Probit = Var(ε) = 1 



1.3. Logistic Regression. Latent theoretic approach

If we assume those error variances, then the variance of y*:

𝜎𝑦∗
2 = 𝜎xβ

2 + 𝜎𝜖
2

Taking the square-root yields of the sd of y, which can be used in 
standardization

Assumed error variance due 

to non-linearity

Variance of predicted 

values on the linear (i.e., 

link) scale



30

Landscape-scale analyses suggest both 
nutrient and antipredator advantages to 

Seregenti herbivore hotspots

133 sites surveyed from 2005-2007 & classified into ‘hotspots’ 
(grazers present 80% of time, grazing evident, dung present)



1.3. Logistic Example. Anderson & Grace

low biomass
aids predator
avoidance

low biomass
improves

forage quality

animals
benefit from

high N forage

Herbaceous

Biomass

HotspotYN

Leaf

Nitrogen

Position in

Landscape

plains, away
from rivers

Model using `glm` and
`family = “binomial”`



1.3. Logistic Example.

# read in data
anderson <- read.csv("anderson.csv")

# construct glm
anderson_glm <- glm(hotspotYN ~ leafN + biomass.kg + landscape, 
"binomial", anderson)

summary(anderson_glm)

.......

Coefficients:
Estimate Std. Error z value Pr(>|z|)   

(Intercept) -12.4026     4.8352  -2.565  0.01031 * 
leafN 6.6867     2.7818   2.404  0.01623 * 
biomass.kg   -7.7838     3.5694  -2.181  0.02921 * 
landscape     1.3600     0.4955   2.745  0.00605 **
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



1.3. Logistic Example.

# get fitted values of linear y*
preds <- predict(anderson_glm, type = "link") # linear predictions

# latent theoretic
sd.ystar <- sqrt(var(preds) + (pi^2)/3) # for default logit-link

# get coefficients from GLM output
betas <- summary(anderson_glm)$coefficients[2:4, 1]

# get vector of sd's of x's
sd.x <- apply(anderson[, names(betas)], 2, sd)



1.3. Logistic Example.

# conduct SEM
anderson_sem <- psem(
glm(hotspotYN ~ leafN + biomass.kg + landscape, "binomial", 

anderson),
lm(leafN ~ biomass.kg, anderson),
data = anderson

)

# get summary output
summary(anderson_sem)

Structural Equation Model of anderson_sem

Call:
hotspotYN ~ leafN + biomass.kg + landscape
leafN ~ biomass.kg

AIC
4.617

---



1.3. Logistic Example.

Tests of directed separation:

Independ.Claim Test.Type DF Crit.Value P.Value
leafN ~ landscape + ...      coef 64    -1.0718  0.2878 

--
Global goodness-of-fit:

Chi-Squared = 1.192 with P-value = 0.275 and on 1 degrees of freedom
Fisher's C = 2.491 with P-value = 0.288 and on 2 degrees of freedom



1.3. Logistic Example.

Coefficients:

Response  Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate    
hotspotYN      leafN   6.6867    2.7818 63     2.4037  0.0162       0.3399   *
hotspotYN biomass.kg  -7.7838    3.5694 63    -2.1807  0.0292      -0.4050   *
hotspotYN  landscape   1.3600    0.4955 63     2.7449  0.0061       0.6332  **

leafN biomass.kg  -0.4880    0.1050 65    -4.6486  0.0000      -0.4995 ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05

---
Individual R-squared:

Response     method R.squared
hotspotYN nagelkerke      0.61

leafN       none      0.25



1.3. Logistic Example.

Herbaceous

Biomass

HotspotYN

Leaf

Nitrogen

Position in

Landscape

-0.50

0.34

-0.41

0.63

Indirect effect:
-0.50 * 0.34 = -0.17

• As herbaceous biomass 
goes up, it reduces the 
chances of being a 
hotspot (reduced 
visibility)

• It also dilutes forage 
quality, further reducing 
the chances of being a 
hotspot

• The direct effect is ~2x 
that of the indirect effect



1.3. Logistic Regression. OE Approach

If non-linear y is truly discrete… (aka, not latent continuous but 
actually binary or continuous, such as counts)

For GLM models we can compute an approximate R2 as the squared 
correlation between observed and fitted values (both of which we 
know)

We also know the variance of the fitted (linear) values (𝜎ො𝑦
2)

We can use this equation to solve for the variance of the non-linear 
y:

𝑅2 =
𝜎ෝ𝑦
2

𝜎𝑦
2 such that 𝜎𝑦

2 =
𝜎ෝ𝑦
2

𝑅2

Where we can take the square-root to get the sd(y)



1.3. Logistic Example. Anderson & Grace

low biomass
aids predator
avoidance

low biomass
improves

forage quality

animals
benefit from

high N forage

Herbaceous

Biomass

HotspotYN

Leaf

Nitrogen

Position in

Landscape

plains, away
from rivers

Model using `glm` and
`family = “binomial”`



1.3. Logistic Example.

# get sd of fitted values
preds <- predict(anderson_glm, type = "link")

# get sd based on observed variance
R2 <- cor(anderson$hotspotYN, predict(anderson_glm, type = 
"response"))^2

# observed empirical sd
sd.yhat <- sqrt(var(preds)/R2)

# get coefficients
betas <- summary(anderson_glm)$coefficients[2:4, 1]

# get vector of sd's of x's
sd.x <- apply(anderson[, names(betas)], 2, sd)

# get OE standardized betas
(OE_betas <- betas * (sd.x/sd.yhat))

leafN biomass.kg  landscape 
0.2637846 -0.3142830  0.4913118 



1.3. Logistic Example.

# get observation empirical standardization
coefs(anderson_glm, standardize.type = "Menard.OE")

Response  Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
1 hotspotYN leafN 6.6867    2.7818 63     2.4037  0.0162       0.2638  *
2 hotspotYN biomass.kg  -7.7838    3.5694 63    -2.1807  0.0292      -0.3143  *
3 hotspotYN landscape   1.3600    0.4955 63     2.7449  0.0061       0.4913 **

# compare to latent linear approach 
coefs(anderson_glm, standardize.type = "latent.linear") # default

Response  Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
1 hotspotYN leafN 6.6867    2.7818 63     2.4037  0.0162       0.3399  *
2 hotspotYN biomass.kg  -7.7838    3.5694 63    -2.1807  0.0292      -0.4050  *
3 hotspotYN landscape   1.3600    0.4955 63     2.7449  0.0061       0.6332 **

# standardized coefs are smaller (since not incorporating binomial 
distribution-specific error variance in the denominator of sd(y))



1.3. Logistic Example. Conclusions

• Both forms of standardization allow for fair comparison of effect 
sizes and calculation of indirect effects

• Is binary response generated by underlying probability? = latent 
theoretic. If not? = observation empirical

• Observation-empirical approach tends to yield lower 
standardized coefficients than the latent theoretic
• Linear approximation (R2) of a non-linear process = 

dampening of signal



1.4 GLM (Poisson 
Regression)



1.4. Poisson Example. Observation Empirical

• If response are true counts, observation empirical can be 
extended to other distributions (Poisson, negative binomial)

• These other distributions have no theoretical variance (like 
binomial)

• “Go ahead, log-transform count data” (Ives 2015)
• Compare standardized coefficients from LM fit to log(y) vs. 

GLM fit to Poisson distribution to see how close we can get 
use this OE approach 



1.4. Poisson Example.

# Generate Poisson distributed data
set.seed(100)

count_data <- data.frame(y = rpois(100, 10))

count_data$x <- count_data$y * runif(100, 0, 5)

# Fit log-transformed response using LM and extract standardized 
coefficient
lm_model <- lm(log(y) ~ x, count_data)

stdCoefs(lm_model)$Std.Estimate
[1] 0.5346

with(count_data, cor(x, log(y))) # same as correlation
[1] 0.5345506 



1.4. Poisson Example.

# fit GLM and extract coefficient (link-scale)
glm_model2 <- glm(y ~ x, family = poisson(link = "log"), count_data)

coef(glm_model2)[2]
x 
0.01204693

# compute observation empirical sd by hand
R2 <- cor(count_data$y, predict(glm_model2, type = "response"))^2

sd.yhat <- sqrt(var(predict(glm_model2, type = "link"))/R2)

coef(glm_model2)[2] * sd(count_data$x)/sd.yhat
x 
0.5695438 

# get from coefs
stdCoefs(glm_model2)$Std.Estimate
[1] 0.5695438

# compare to LM model r.squared
sqrt(summary(lm_model)$r.squared)
[1] 0.5345506



1.4. Poisson Example. Observation Empirical

• Standardized coefficient from log-transformed LM *very* similar 
to GLM fit with a log-link (differences due to under-the-hood 
machinery)

• Extends to negative binomial as well

• Should be link-invariant (exercise: repeat with sqrt-link)

• Other distributions (beta, gamma, etc.) have multiple parameters 
that denote the shape of the relationship → still working on how 
to extend this observation empirical approach


