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Introduction to Likelihood 
Methods for SEM

Jarrett E. K. Byrnes
University of Massachusetts Boston

S =S(Q)

"There are no routine statistical 
questions, only questionable 
statistical routines"

- Sir David Cox

What is Covariance-Based SEM 
Estimation with Likelihood?

• Estimation of parameters given covariance of 
the data

• Equivalent to Linear Regressions, but…

• Estimation of each parameter influences the 
others

• Can accomodate unobserved (latent) variables 
and feedbacks

A Likely Outline

1. What is SEM using likelihood and 
covariance matrices?

2. Model Identifiability

3. Sample Size for SEM

4. Standardized Coefficients

5. Introduction to lavaan
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COVxy =
X − X( ) Y −Y( )∑
n−1

rxy =
COVxy
SDxSDy

Covariance and Correlation
We often use covariances to calculate slopes, but 
standardized covariances – i.e. correlations – for 
interpretation.

Standardized Covariance Matrix

x1 x2 y1
-----------------------------
x1 1.0
x2 0.76 1.0
y1 0.44 0.63 1.0

Raw Covariance Matrix

x1 x2 y1
-----------------------------
x1 0.81
x2 0.87 1.63
y1 0.88 1.80 4.98

variance covariance correlation

Covariance and Correlation

Maximizing Likelihood with One Parameter

Iteration over possible values simple

Likelihood with Two Parameters

• Algorithms used to search parameter space
• Integrate answer over all data points 
– difficult computationally!
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How does ML Estimation Work?

x1

y1

y2

Hypothesized Model Observed Covariance Matrix

{ 1.3
.24 .41
.01  9.7  12.3}S =

compareEvaluate 
Model Fit

+

Parameter
Estimates

estim
ation

(e.g., m
aximum likelihood)

Σ = { σ11
σ12 σ22
σ13 σ23 σ33

}
Implied Covariance Matrix

^

What we’re used to with ML

Data Generation: µi = a + bXi

Likelihood Function: Fr = Yi ~ dnorm(µi, s)

We minimize the likelihood function, Fr

It’s…More Complicated with SEM

Data Generation:

Likelihood Function:

FML = log Σ̂ − log S + tr SΣ̂
−1( )− p+ q( )

The Maximum Likelihood Fitting 
Function

FML = log Σ̂ − log S + tr SΣ̂
−1( )− p+ q( )

• If S =S, term 1 - 2 = 0 and terms 3 - 4 = 0. 
• FML = 0 with perfect fit

S = Sample covariance matrix
S = Fit covariance matrix
p = endogenous variables
q = exogenous variables

Linear Algebra Review

Det(A) = scalar number

A*A-1 = Diagonal matrix of ones
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Assumptions Behind Fml
• Multivariate normality

– Fairly robust (non-normality of residuals bigger problem)
– Test with multivariate Shapiro-Wilk's Test (library mvnormtest)
– In particular, no skew
– Severe violations bias parameter error and tests of model fit

• No missing data in calculation of S
– Biases your estimates with pairwise corrections

• No redundant variables
– S must be positive definite

• Sample size is “large” (more soon)

A Likely Outline

1. What is SEM using likelihood and 
covariance matrices?

2. Model Identifiability

3. Sample Size for SEM

4. Standardized Coefficients

5. Introduction to lavaan

Identifiability
1.To fit a model, it must be identified

2.We need as much unique information as 
parameters

3.What can make a model non-identified?
• Too many paths relative to # of variables
• Certain model structures
• High multicollinearity (r>0.9)
• Complex model & small sample

4.How do I know if my model is identified?

3 = a + b
4 = 2a + b a and b have unique solutions Just identified

3 = a + b + c
4 = 2a + b + 3c

a, b, and c have no unique 
solution Underidentified

3 = a + b
4 = 2a + b
7 = 3b + a

a and b have unique solutions, 
more knowns than 
unknowns

Overidentified

Identification: An Algebra-Eye View
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x1 y1

ζ1

y2

Overidentified
(Unsaturated)

ζ2

x1 y1 y2

Just Identified 
(Saturated)

ζ1 ζ2

x1 y1

ζ1

y2

Underidentified (Oversaturated)

ζ2

Different Model States The T-Rule
# of Parameters v. Covariance Matrix

• # Parameters £ # Unique Entries in a Covariance Matrix

T-rule: t £ (p+q)(p+q+1)/2

• t=# params, p = # endogenous variables, q = # exogenous variables

x1

y1

y2

z2

z1
b12

g12 x1 y1 y2

x1 0.5

y1 0.7 0.5

y2 0.2 0.8 0.3

Cov(x,y1,y2)=

δ
2

How Do I Count the Number of 
Parameters?  

x1

y1

y2

z2

z1
b12

g12

Yes, there is a variance here

If variance and covariances among exogenous variables is not shown 
either draw them or use modified formula:

T-rule: t* £ (p+q)(p+q+1)/2 - q(q+1)/2

You will see path diagrams drawn many 
ways…

Check what researcher is doing with exogenous variables!
DF of all of these models = 4*5/2 – 8 = 2

x2

y1

y2

z2

z1

x1 x2

y1

y2

z2

z1

x1x2

y1

y2

z2

z1

x1

δ2δ1
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Model Degrees of Freedom
DF = tmax - t

Estimating 5 parameters from 6 variance/covariance 
relationships

DF=1
Model Is Overidentified

x1

y1

y2

z2

z1
b12

g12 x1 y1 y2

x1 0.5

y1 0.7 0.5

y2 0.2 0.8 0.3

Cov(x,y1,y2)=

Identification in SEM
# of Parameters v. Covariance Matrix

x1

y1

y2

z2

z1
b12

g12

Overidentified Just Identified

x1

y1

y2

z2

z1
b12

g11

g12

Just Identified models have no DF to evaluate fit

Identification in SEM
Many Regressions

x1

y1 y2
z2z1

g12g11

Yes: There are no relationships between endogenous variables
SUFFICIENT CONDITION

Identification in SEM
No Feedbacks

x1

y1 y2
z2z1

g12g11

Yes: Model is Recursive
SUFFICIENT CONDITION

b12
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y1x2

x1 y2

ζ1

ζ2

Recursive

y1x2

x1 y2

ζ1

ζ2

Non-recursive

Recursive = each item in a series is 
directly determined by the 
preceding item

Non-recursive = there is 
bidirectionality (feedbacks) implicit 
in the model

Feedbacks and SEM Identification in SEM
Feedbacks with Different Causes

x1

y1 y2
z2z1

g22g11

YES: Model is Non-recursive, but y's have unique information
NECESSARY CONDITION

b12

b21

x2

Identification in SEM
Is this model identified?

x1

y1 y2
z2z1

g22g11

b12

b21

x2

NO! Model is Non-recursive
AND not enough information for unique solution

g12

y1x2

x1 y2

ζ1

ζ2

Non-recursive

y1x2

x1 y2

ζ1

ζ2

Recursive

y2 at t-1

y1 at t-1

Break Feedbacks with Time
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y1t-1y1t-2

x1t-2 x1t-1

ζ3

ζ1
Recursive

y1t

x1t

ζ2

ζ4• Time series analysis
• BACI designs
• Etc…

Cross-Lagged Panel Models to Solve 
Feedbacks!

Identification: Can I Fit My Model?
• NECESSARY: Fewer parameters than entries in 

covariance diagonal matrix (T-Rule)

• SUFFICIENT: And my model is recursive

• If you have feedbacks, then…
– Break your model into time-lags (this is easy)
– Or, ensure you have unique information for all 

variables (this can be hard!)

A Likely Outline

1. What is SEM using likelihood and 
covariance matrices?

2. Model Identifiability

3. Sample Size for SEM

4. Standardized Coefficients

5. Introduction to lavaan

1. The further you are in a model from an exogenous data-
generating, the weaker it's influence.

2. Our ability to detect these tapering effect sizes is 
proportional to our information (especially sample size) 
and the number of parameters being estimated.

3. Sample size sets an upper limit for the complexity of the 
model we can obtain.

4. Sample Size influences our ability to detect lack of 
model fit
• This might not be a benefit…

Sample Size
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So…What’s my Sample Size?

1. Rules of thumb for sample size - at least 5 
samples per estimated parameter
– prefer 20 samples per parameter
– Really, p3/2/n should approach 0 (Portnoy 1988)

2. Path coefficients add to our parameter list, 
not the variances

There are a total of 12
parameters shown.  

However, only 6 of these 
require unique 
information…

Epiphytes

.41

Grass
3.43

Macroalgae

LNGammarids

.19

ech

1

.44

egm

1

.37

-.16

.30 -.40 .31

.07

.24

pesticide

Chi-sqr = 5.147; df = 3; p = .161
AIC = 29.147; NPAR = 12

-2.05

Number of Estimated Parameters

.59

Epiphytes GrassMacroalgae

.75

LNGammarids

ech

egm

.35

-.14

.42 -.79 .15

.18

pesticide

Chi-sqr = 5.147; df = 3; p = .161
AIC = 29.147; NPAR = 12

-.75

35

Variances & covariance of 
exogenous variables can be 
obtained from the data. For 
“pesticide”, “Macroalgae”, and 

“Grass", this removes 4 
parameters.

Error variances (and R2) for 
endogenous variables are 
calculated from other 
parameters.  This removes 

2 parameters. 

Only 6  parameters require unique 
information. 
Samples/parameters = 40/6 = 6.7. 

Parameters Needing Unique Information A Likely Outline

1. What is SEM using likelihood and 
covariance matrices?

2. Model Identifiability

3. Sample Size for SEM

4. Standardized Coefficients

5. Introduction to lavaan
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• Standardized coefficient = relative strength of the pathway
• “ A 1 standard deviation change in X results in some

standard deviation change in Y ”
• Path Coefficient

• Unstandardized coefficient = absolute strength of the pathway
• “ An 1 unit change in X results in some unit change in Y ”

bxy std = bxy * sdx/sdy

Standardization Same Slope, Different Correlation

Regression: y = a + bx

Standardized Coefficients: r = b * sd(x)/sd(y)

Different Slope, Same Correlation

Regression: y = a + bx

Standardized Coefficients: r = b * sd(x)/sd(y)

Unstandardized Standardized

Good for prediction:
coefficients are in raw units

Good for ranking: 
coefficients are in equivalent
units

Has direct real world 
meaning

Less clear real world 
meaning

Can be compared across 
pathways or models that 
have identical units

Can be compared across all 
pathways in all models

Which to Use?
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A Likely Outline

1. What is SEM using likelihood and 
covariance matrices?

2. Model Identifiability

3. Sample Size for SEM

4. Standardized Coefficients

5. Introduction to lavaan

What is lavaan?

• Stands for LAtent VAriable Analaysis

• Written by Yves Roseel in 2010

• Currently in version 5, but 6 coming soon

• Uses R lm syntax

1. SOFTWARE IS A TOOL

2. IT IS NOT PERFECT

3. ALWAYS MAKE SURE IT IS DOING WHAT YOU 
THINK IT IS DOING!

A Reminder

44

Mediation in Analysis of Post-Fire Recovery of 
Plant Communities in California Shrublands*

*Five year study of wildfires in Southern California in 1993. 90 plots 
(20 x 50m), (data from Jon Keeley et al.)
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45

Analysis focus: understand post-fire recovery of
plant species richness

Examination of woody remains 
allowed for estimate of age of 
stand that burned as well as 
severity of the fires.

measured vegetation recovery:
-plant cover
-species richness

46

Other factors measured included:
- local abiotic conditions (aspect, soils)
- spatial heterogeneity
- landscape-level conditions (location, elevation)

Post-fire Vegetation Recovery Example
Observation: Post-fire Cover Declines with Age of Stand that Burned 

Post-fire Vegetation Recovery Example (cont.):

age -> severity severity -> cover
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49

2

Local FactorsLandscape Factors

Position in
Landscape

Abiotic
Favorability

Post-Fire
Plant

Abundance

Fire
Severity

Stand
Age

Plant
Species

Richness

Heterogeneity

3

model 1 - includes all unnumbered paths
model 2 - possible loss of species from seedbank in older stands
model 3 - possible selective destruction of seeds in seedbank in severe fires

Theory leads 
us to a primary 
interest in 
three models.

The SEMM

Position in
Landscape

Abiotic
Favorability

Post-Fire
Plant

Abundance

Fire
Severity

Stand
Age

Plant
Species

Richness

Heterogeneity

age

coast

firesev cover

rich

hetero

abiotic

How do available measures
relate to theoretical constructs?

Matching the SEMM to Data

51

stand
age

fire
severity

e2

post-fire
cover

e1 e3

distance
from
coast

optimum
abiotics

within-plot
heterogeneity

species
richness

e6

e5

e4

2

3

Model 1 - all unnumbered paths
Model 2 – includes additional mechanism: loss of species from seedbank in older stands
Model 3 – includes selective destruction of seeds in seedbank in severe fires

Realized Models with Data Coding a Regression versus SEM

#regression
aLM<-lm(cover ~ age, data=keeley)

#sem
library(lavaan)
aSEM<-sem('cover ~ age', data=keeley)

age cover
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summary(aSEM)
lavaan (0.5-23.1097) converged normally after  10 iterations

Number of observations                            90

Estimator                                         ML
Minimum Function Test Statistic                0.000
Degrees of freedom                                 0

Parameter estimates:

Information                                 Expected
Standard Errors                             Standard

Estimate  Std.err Z-value  P(>|z|)
Regressions:
cover ~
age              -0.009    0.002   -3.549    0.000

Variances:
.cover             0.087    0.013

Model is saturated 
so, c2  test has no df

The model converged!
Compare to Regression

Estimate  Std.err Z-value  P(>|z|)
Regressions:
cover ~
age              -0.009    0.002   -3.549    0.000

Variances:
.cover             0.087    0.013

> summary(aLM)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.917395   0.071726   12.79  < 2e-16 ***
age         -0.008846   0.002520   -3.51  0.00071 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.2988 on 88 degrees of freedom

Compare to Residual SE
sqrt(0.087)=0.295

But what about the intercept?

Intercepts Estimated with Mean 
Structure

> aMeanSEM<-sem('cover ~ age', 
data=keeley, meanstructure=T)

> summary(aMeanSEM)
...

Estimate  Std.err Z-value  P(>|z|)
Regressions:
cover ~
age              -0.009    0.002   -3.549    0.000

Intercepts:
.cover             0.917    0.071   12.935    0.000

Variances:
.cover             0.087    0.013

Intercepts Estimated with Mean 
Structure

> aMeanSEM<-sem('cover ~ age', 
data=keeley, meanstructure=T)

age cover

1

Slope

Intercept
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Standardized Coefficients
>standardizedSolution(aSEM)

lhs op   rhs est.std    se      z pvalue
1 cover  ~   age  -0.350 0.090 -3.912      0
2 cover ~~ cover   0.877 0.063 13.973      0
3   age ~~   age   1.000 0.000     NA     NA

age cover
-0.35

0.88

Also: summary(aSEM, standardized=T, rsq=T)

Can I See It?
library(lavaanPlot)
lavaanPlot(model = aSEM, coefs = TRUE)

Can I See It?
lavaanPlot(model = aSEM, coefs = TRUE,

stand=TRUE)

Indirect Effects and Fire

partialMedModel<-' firesev ~ age
cover ~ firesev + age'

partialMedSEM<-sem(partialMedModel, 
data=keeley)

age cover

firesev
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summary(partialMedSEM, rsquare=T, standardized=T)

Estimate  Std.err Z-value  P(>|z|)   Std.lv Std.all
Regressions:
firesev ~
age               0.060    0.012    4.832    0.000    0.060    0.454

cover ~
firesev -0.067    0.020   -3.353    0.001   -0.067   -0.350
age              -0.005    0.003   -1.833    0.067   -0.005   -0.191

Variances:
.firesev 2.144    0.320                      2.144    0.794
.cover             0.078    0.012                      0.078    0.780

R-Square:

firesev 0.206
cover             0.220

age cover

firesev
0.45 -0.35

-0.19
0.78

0.79

Plotting… and it’s Limits
lavaanPlot(model = partialMedSEM, coefs = TRUE,

stand = TRUE, 
graph_options = list(layout = "circo"),
sig = 0.05)

Better layout for this modelOnly shows coefs p≤0.05

Calculating Indirect & Total Effects

partialMedModelInd <-'

#model
firesev ~ af*age
cover ~ fc*firesev + ac*age

#Derived Calcuations
indirect := af*fc
total := ac + (af*fc)

'

age cover

firesev

ac

af fc

Calculating Indirect & Total Effects

Estimate  Std.err Z-value  P(>|z|)
Regressions:
firesev ~
age      (af)     0.060    0.012    4.832    0.000

cover ~
firesev (fc)    -0.067    0.020   -3.353    0.001
age      (ac)    -0.005    0.003   -1.833    0.067

age cover

firesev

ac

af fc
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Calculating Indirect & Total Effects

Estimate  Std.err Z-value  P(>|z|)

...

Defined parameters:
indirect         -0.004    0.001   -2.755    0.006
total            -0.009    0.002   -3.549    0.000

age cover

firesev

ac

af fc

Calculating Indirect & Total Effects

> standardizedSolution(partialMedSEMInd)
lhs op        rhs est.std    se      z pvalue

...
10 indirect :=      af*fc  -0.159 0.054 -2.947  0.003
11    total := ac+(af*fc)  -0.350 0.090 -3.912  0.000

age cover

firesev

ac

af fc

Take Lavaan for a Spin!
1. Fit this model!
2. Fill in Standardized Coefficients and R2 for 

this model
3. Calculate summed direct and indirect effects 

of distance on richness
4. Call out with warnings, errors, etc!

distance rich

hetero

abiotic

The dreaded variance warning!

Warning message:
In lav_data_full(data = data, group = 
group, cluster = cluster,  :
lavaan WARNING: some observed 

variances are (at least) a factor 
1000 times larger than others; use 
varTable(fit) to investigate
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Diagnosing Error Issues
> inspect(distFit, "obs")
$cov

rich    hetero  abiotc  distnc 
rich     225.646                        
hetero     0.784   0.013                
abiotic   58.312   0.241  58.314        
distance  77.089   0.347  30.824  77.094

Is this OK?

1. Does it indicate an outlier or data problem?
2. This is a likelihood algorithm problem – can be fine!

3. If you are worried, rescale by 10s, see if answers change

Solution 1: The Model

#The Richness Partial Mediation Model
distModel <- 'rich ~ distance + abiotic + hetero

hetero ~ distance
abiotic ~ distance'

distFit <- sem(distModel, data=keeley)

standardizedSolution(distFit)

distance richness

hetero

abiotic

Solution 2: Coefficients

lhs op      rhs est.std se     z pvalue
1     rich  ~ distance   0.377 0.092 4.117  0.000
2     rich  ~  abiotic   0.268 0.087 3.079  0.002
3     rich  ~   hetero   0.256 0.082 3.104  0.002
4   hetero  ~ distance   0.346 0.099 3.498  0.000
5  abiotic  ~ distance   0.460 0.094 4.911  0.000
6     rich ~~     rich   0.539 0.080 6.708  0.000
7   hetero ~~   hetero   0.880 0.131 6.708  0.000
8  abiotic ~~  abiotic   0.789 0.118 6.708  0.000
9 distance ~~ distance   1.000    NA    NA     NA

distance
richness
R2=0.46

hetero
R2=0.12

abiotic
R2=0.21

0.38

0.27

0.260.35

0.46

Solution 3: Direct and Indirect

distModelEff <- '
rich ~ dr*distance + ar*abiotic + hr*hetero
hetero ~ dh*distance
abiotic ~ da*distance

#The effects
direct := dr
indirect := dh*hr + da*ar
total := direct + indirect
'

distance
richness
R2=0.46

hetero
R2=0.12

abiotic
R2=0.21

dr

ar

hrdh

da
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Solution 3: Direct and Indirect

> standardizedSolution(distFitEff)
lhs op             rhs est.std se      z pvalue

...
10   direct :=              dr   0.377 0.086  4.390  0.000
11 indirect :=     dh*hr+da*ar   0.212 0.055  3.835  0.000
12    total := direct+indirect   0.589 0.062  9.433  0.000

distance
richness
R2=0.46

hetero
R2=0.12

abiotic
R2=0.21

dr

ar

hrdh

da

What would you say about direct and indirect effects in this system?

What if we know better?

zeroMedModel<-' firesev ~ 0*age
cover ~ 0*firesev + age'

zeroMedFit<-sem(zeroMedModel, 
data=keeley)

age cover

firesev
00Fill in 0's to remind 

us that firesev is in 
the model, and 
fixed to 0

Need to do this for 
model comparison, 
as we are 
comparing 
covariance matrices

What lavaan sees…
> inspect(aSEM, "obs")
$cov

cover   age    
cover   0.100        
age    -1.381 156.157
...

> inspect(zeroMedFit, "obs")
$cov

firesv  cover   age    
firesev   2.700                
cover    -0.227   0.100        
age       9.319  -1.381 156.157
...

age cover

firesev
00

age cover

standardizedSolution(zeroMedFit)

lhs op     rhs est.std se      z pvalue
1 firesev ~     age   0.000    NA     NA     NA
2   cover  ~ firesev 0.000    NA     NA     NA
3   cover  ~     age  -0.350 0.099 -3.549      0
4 firesev ~~ firesev 1.000 0.149  6.708      0
5   cover ~~   cover   0.877 0.131  6.708      0
6     age ~~     age   1.000    NA     NA     NA

age cover

firesev
00

-0.35

0.88
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Or… Just use intercepts!

zeroMedModel2<-'
firesev ~ 1
cover ~ age

'

age cover

firesev

Or… Just use intercepts!

lhs op     rhs est.std    se      z pvalue
1 firesev ~1           2.778 0.232 11.956      0
2   cover  ~     age  -0.350 0.090 -3.912      0
3   cover ~~   cover   0.877 0.063 13.973      0

age cover

firesev

What about Correlated Error?

#what about correlations
corModel <-'firesev ~ age

cover ~ age
cover ~~ firesev'

corFit <- sem(corModel, data=keeley)

age
cover

firesev

z1

z2

What about Correlated Error?

> standardizedSolution(corFit)
lhs op     rhs est.std se      z pvalue

1 firesev ~     age   0.454 0.094  4.832      0
2   cover  ~     age  -0.350 0.099 -3.549      0
3 firesev ~~   cover  -0.333 0.094 -3.556      0
4 firesev ~~ firesev 0.794 0.118  6.708      0
5   cover ~~   cover   0.877 0.131  6.708      0
6     age ~~     age   1.000    NA     NA     NA

age
cover

firesev

0.87

0.7
9

-0.35

0.45

-0.33
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Final Exercise
1. How does this model differ if the abiotic and hetero 

error correlate?

2. Fit assuming that there is a 1:1 (think 1 instead of 0) 
relationship between distance and richness 
– No error correlation please

distance rich

hetero

abiotic

Solution 1: Error Correlation

corErrorModel <- '
rich ~ distance + abiotic + hetero
hetero ~ distance
abiotic ~ distance

abiotic ~~ hetero
'

distance
richness
R2=0.46

hetero
R2=0.12

abiotic
R2=0.21

0.38

0.27

0.260.35

0.46

0.14

Coefficients unaffected

Solution 2: The New Model

oneDistModel <- 'rich ~ 1*distance + abiotic + hetero
hetero ~ distance
abiotic ~ distance’

oneFit<-sem(oneDistModel, data=keeley)
summary(oneFit, stdandardized=T, rsquare=T)

distance
richness
R2=0.52

hetero
R2=0.12

abiotic
R2=0.21

0.54 (1)

0.17

0.190.35

0.46

Solution 2: The New Model

distance
richness
R2=0.52

hetero
R2=0.12

abiotic
R2=0.21

0.54 (1)

0.17

0.190.35

0.46

distance
richness
R2=0.46

hetero
R2=0.12

abiotic
R2=0.21

0.38

0.27

0.260.35

0.46

Unconstrained Model
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Now that you’re armed and 
dangerous…

Fit your data to a SIMPLE model with 
lavaan


