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1.2. Pseudo-R2s



1.2. Pseudo-R2s. Omnibus test

• Fisher’s C / χ2 is the global fit statistic for local estimation but 
has many shortcomings:

• Sensitive to the number of d-sep tests and the complexity 
of the model (easier to reject as the complexity increases)

• Sensitive to the size of the dataset (e.g., high n leads to 
low P)

• Fails symmetricity when dealing with d-separated non-
normal intermediate variables

• Cannot be computed for saturated models



1.2. Pseudo-R2s. Local tests

• How do we infer the confidence in our SEM?

• Examine standard errors of individual paths, qualitatively 
assess cumulative precision

• Explore variance explained (i.e., R2), qualitatively assess 
cumulative precision



1.2. Pseudo-R2s. General linear regression

• Coefficient of determination (R2) = proportion of variance in 
response explained by fixed effects

• For OLS regression, simply 1- the ratio of unexplained (error) 
variance (e.g., SSerror) over the total explained variance (e.g., 
SStotal)

• Ranges (0, 1), independent of sample size

• Not good for model comparisons since R2 monotonically 
increases with model complexity (go to AIC which is penalized 
for complexity)



1.2. Pseudo-R2s. Generalized linear regression

• Likelihood estimation is not attempting to minimize variance 
but instead obtain parameters that maximize the likelihood of 
having observed the data

• In a likelihood framework, equivalent R2 = 1- the ratio of the 
log-likelihood of the full model over the log-likelihood of the 
null (intercept-only) model

• Leads to identical R2 as OLS for normal (Gaussian) 
distributions, not so for GLM – need to use likelihood-based 
pseudo-R2 (e.g., McFadden, Nagelkerke)



1.2. Pseudo-R2s. Generalized mixed models

• Becomes even worse for mixed models because variance is 
partitioned among levels of the random factor, so what is the 
error variance?

• Need a new formulation of R2 :

• Marginal R2 = variance explained by fixed effects only

Fixed effects variance

Fixed effects variance

Random effects variance

Residual variance

Distribution-specific
variance 



1.2. Pseudo-R2s. Generalized mixed models

• Conditional R2 = variance explained by both the fixed and 
random effects

Fixed effects variance

Fixed effects variance

Random effects variance

Residual variance

Distribution-specific
variance 

Random effects variance



1.2. Pseudo-R2s. Generalized mixed models

• Comparison of marginal and conditional R2 can lead to 
roundabout assessment of ‘significance’ of the random 
effects (e.g., if conditional R2 is larger relative to marginal R2)

• Best to report both and allow readers to determine how their 
magnitude affects the inferences



1.2. GLMM Example



1.2. SEM Example. Shipley 2009

• Hypothetical dataset: predicting latitude effect on survival of a 
tree species

• Repeated measures on 5 subjects at 20 sites from 1970-2006

• Survival (0/1) influenced by phenology (degree days until bud 
break, Julian days until bud break), size (stem diameter growth)

Latitude
Degree 

days
Date Growth Survival



1.2. SEM Example. Shipley 2009

• Two distributions: normal, binary (survival)

• Random effects: 
• Site-only: latitude
• Site and year: degree days, date
• Site, year, and subject: diameter, survival

Latitude
Degree 

days
Date Growth Survival



1.2. SEM Example. What is the basis set?

Latitude
Degree 

days
Date Growth Survival

• Date ⏊ Lat | (Degree days)
• Growth ⏊ Lat | (Date)
• Survival ⏊ Lat | (Growth)
• Growth ⏊ Degree days | (Date, Lat)
• Survival ⏊ Degree days | (Growth, Lat)
• Survival ⏊ Date | (Growth, Degree days)



1.2. SEM Example. List of equations

Latitude
Degree 

days
Date Growth Survival

library(piecewiseSEM)
library(nlme)
library(lme4)

# Load data
data(shipley); shipley <- na.omit(shipley)

# Create list of structural equations
shipley.sem <- psem(
lme(DD ~ lat, random = ~1|site/tree, na.action = na.omit,

data = shipley),
lme(Date ~ DD, random = ~1|site/tree, na.action = na.omit,

data = shipley),
lme(Growth ~ Date, random = ~1|site/tree, na.action = na.omit,

data = shipley),
glmer(Live ~ Growth + (1|site) + (1|tree),

family = binomial(link = "logit"), data = shipley)
)



1.2. SEM Example. D-sep tests

Latitude
Degree 

days
Date Growth Survival

# Get summary
summary(shipley.sem)

Structural Equation Model of shipley.sem

Call:
DD ~ lat
Date ~ DD
Growth ~ Date
Live ~ Growth

AIC
21745.782

---



1.2. SEM Example. D-sep tests

Latitude
Degree 

days
Date Growth Survival

Tests of directed separation:

Independ.Claim Test.Type DF Crit.Value P.Value
Date ~ lat + ...      coef 18    -0.0798  0.9373 

Growth ~ lat + ...      coef 18    -0.8929  0.3837 
Live ~ lat + ...      coef 1431     1.0280  0.3039 
Growth ~ DD + ...      coef 1329    -0.2967  0.7667 
Live ~ DD + ...      coef 1431     1.0046  0.3151 

Live ~ Date + ...      coef 1431    -1.5617  0.1184 

--
Global goodness-of-fit:

Chi-Squared = NA with P-value = NA and on 6 degrees of freedom
Fisher's C = 11.536 with P-value = 0.484 and on 12 degrees of freedom

---

Warning message:
Check model convergence: log-likelihood estimates lead to negative Chi-squared!



1.2. SEM Example. D-sep tests

Latitude
Degree 

days
Date Growth Survival

# Look at problematic model & variance components
Live.model <- glmer(Live ~ Growth + Date + DD + lat + (1|site) + 
(1|tree), family = binomial(link = "logit"), data = shipley)
boundary (singular) fit: see ?isSingular

VarCorr(Live.model) 
Groups Name        Std.Dev.
tree   (Intercept) 0       
site   (Intercept) 0 



1.2. SEM Example. D-sep tests

Latitude
Degree 

days
Date Growth Survival

• Re-specify random structure

• Still no positive χ2 statistic 

• Consider other distributions (e.g., 
negative binomial)

• Revert to d-sep test



1.2. SEM Example. D-sep tests

Latitude
Degree 

days
Date Growth Survival

Coefficients:

Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
DD       lat -0.8355    0.1194   18    -6.9960       0      -0.6877 ***

Date        DD  -0.4976    0.0049 1330  -100.8757       0      -0.6281 ***
Growth      Date   0.3007    0.0266 1330    11.2.917       0       0.3824 ***
Live    Growth   0.3479    0.0584 1431     5.9552       0       0.7866 ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05

---
Individual R-squared:

Response method Marginal Conditional
DD   none     0.49        0.70

Date   none     0.41        0.98
Growth   none     0.11        0.84
Live  delta     0.16        0.18



1.2. SEM Example. Populate final model

Latitude
Degree 

days
Date Growth Survival

-0.69 -0.63 0.38 0.79

R2 = 0.70 R2 = 0.98 R2 = 0.84 R2 = 0.18

Coefficients:

Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
DD       lat -0.8355    0.1194   18    -6.9960       0      -0.6877 ***

Date        DD  -0.4976    0.0049 1330  -100.8757       0      -0.6281 ***
Growth      Date   0.3007    0.0266 1330    11.2.917       0       0.3824 ***
Live    Growth   0.3479    0.0584 1431     5.9552       0       0.7866 ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05

---
Individual R-squared:

Response method Marginal Conditional
DD   none     0.49        0.70

Date   none     0.41        0.98
Growth   none     0.11        0.84
Live  delta     0.16        0.18



1.2. SEM Example. Refit using lavaan

Latitude
Degree 

days
Date Growth Survival

-0.84 -0.50 0.30 0.35

...

Estimator                                         ML
Model Fit Test Statistic                      38.433
Degrees of freedom                                 6
P-value (Chi-square)                           0.000

...

Regressions:
Estimate  Std.Err z-value  P(>|z|)

DD ~                                                
lat -0.860    0.023  -37.923    0.000

Date ~                                              
DD               -0.517    0.016  -32.525    0.000

Growth ~                                            
Date              0.173    0.020    8.508    0.000

Live ~                                              
Growth            0.006    0.001    9.854    0.000

R2 = 0.70 R2 = 0.98 R2 = 0.84 R2 = 0.18



Latitude
Degree 

days

Date

Growth Survival

Latitude
Degree 

days
Date Growth Survival

1.2. SEM Example. Compare these models



Latitude
Degree 

days

Date

Growth Survival

Latitude
Degree 

days
Date Growth Survival

1.2. SEM Example. Compare these models

AIC = 21745

AIC = 21765



Latitude
Degree 

days

Date

Growth Survival

Latitude
Degree 

days
Date Growth Survival

1.2. SEM Example. Compare these models (d-sep)

AIC = 49.54

AIC = 71.2.4



Yvon-Durocher et al (2015): Experimental warming on 
phytoplankton diversity and biomass

Warmed outdoor 
mesocosms for 5 

years (!!) and 
measured 

phytoplankton 
diversity & biomass



ACTIVITY. Fit Durocher dataset

Std.Temp

Prich

Pbio

GPP

CR

Include random effect of Pond.ID!



1.2. SEM Example. Your turn…

Std.Temp

Prich

PbioGPP

CR

R2 = 0.21

R2 = 0.17

R2 = 0.55R2 = 0.10

0.34

0.35

Model-wide P = 0.063 or P < 0.001



1.2. SEM Example. Your turn…

• Try removing incomplete cases first: complete.cases
• What is their mistake here?

• Methods state: “with multiple measurements of variables 

made seasonally, nested within replicate mesocosms,” but 

then, “a path model as a set of hierarchical linear mixed 

effects models, each of which included hypothesized 

relationships between a response variable and a set of 

predictors as fixed effects and mesocosm ID as a random 

effect on the intercept.” 

• Play with the random structure?

• What about by treatment (Ambient vs. Heated)?

• Can anyone reproduce this result? Is it time to write a 
response?



1.3. GAM Example



1.3. Generate example data

# Generate data from paper
set.seed(100)
n <- 100
x1 <- rchisq(n, 7)
mu2 <- 10*x1/(5 + x1)
x2 <- rnorm(n, mu2, 1)
x2[x2 <= 0] <- 0.1
x3 <- rpois(n, lambda = (0.5*x2))
x4 <- rpois(n, lambda = (0.5*x2))
p.x5 <- exp(-0.5*x3 + 0.5*x4)/(1 + exp(-0.5*x3 + 0.5*x4))
x5 <- rbinom(n, size = 1, prob = p.x5)
dat2 <- data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = x5)

• Example data from appendix of Shipley and Douma
using a mix of non-normal and non-linear variables



1.3. Fit this SEM using `lm` and get GoF

x2 x5

x4

x3

x1



1.3. Fit this SEM using `lm` and get GoF

x2 x5

x4

x3

x1

LLchisq(shipley_psem2)
Chisq df P.Value

1 4.143  5   0.529



x2 x5

x4

x3

x1

shipley_psem3 <- psem(
gam(x2 ~ s(x1), data = dat2, family = gaussian),
glm(x3 ~ x2, data = dat2, family = poisson),
gam(x4 ~ x2, data = dat2, family = poisson),
glm(x5 ~ x3 + x4, data = dat2, family = binomial)

)

1.3. Fit using GAM and GLM



x2 x5

x4

x3

x1

# Get goodness-of-fit
LLchisq(shipley_psem2)

Chisq df P.Value
1 4.143  5   0.529

1.3. Fit using GAM and GLM



x2 x5

x4

x3

x1

# Compare linear and non-linear models
AIC(shipley_psem2, shipley_psem3)

AIC      K   n
1 1240.20 13.000 100
2 1190.75 11.563 100

1.3. Fit using GAM and GLM



1.3. Truly Non-Linear Implementations

• Possible to compare models with the same 
typology but different ML fitting functions and 
forms (or nested models)

• Do not get coefficients returned by `coefs` 
because smoothed terms are non-linear 
functions

• How to present this path diagram???



1.3. Truly Non-Linear Implementations

• Piecewise SEM can be extended to many 
different model types: as long as you can get a 
P-value or compute a log-likelihood, you can 
estimate fit
• Matrix regression (Barnes et al. 2016)
• Spatially-explicit models
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