Extensions to Local Estimation

Overview

1. Assessing fit using Pseudo-R²s

2. GLMM Example

3. GAM Example

1.2. Pseudo-*R*²s

1.2. Pseudo-R²s. Omnibus test

- Fisher's C/χ^2 is the global fit statistic for local estimation but has many shortcomings:
 - Sensitive to the number of d-sep tests and the complexity of the model (easier to reject as the complexity increases)
 - Sensitive to the size of the dataset (e.g., high n leads to low P)
 - Fails symmetricity when dealing with d-separated nonnormal intermediate variables
 - Cannot be computed for saturated models

1.2. Pseudo-R²s. Local tests

- How do we infer the confidence in our SEM?
 - Examine standard errors of individual paths, qualitatively assess cumulative precision
 - Explore variance explained (i.e., R²), qualitatively assess cumulative precision

1.2. Pseudo-R²s. General linear regression

- Coefficient of determination (R²) = proportion of variance in response explained by fixed effects
- For OLS regression, simply 1- the ratio of unexplained (error) variance (e.g., SS_{error}) over the total explained variance (e.g., SS_{total})
- Ranges (0, 1), independent of sample size
- Not good for model comparisons since R² monotonically increases with model complexity (go to AIC which is penalized for complexity)

1.2. Pseudo-R²s. Generalized linear regression

- Likelihood estimation is not attempting to minimize variance but instead obtain parameters that maximize the likelihood of having observed the data
- In a likelihood framework, equivalent R² = 1- the ratio of the log-likelihood of the full model over the log-likelihood of the null (intercept-only) model
- Leads to identical R² as OLS for normal (Gaussian)
 distributions, not so for GLM need to use likelihood-based
 pseudo-R² (e.g., McFadden, Nagelkerke)

1.2. Pseudo-R²s. Generalized mixed models

- Becomes even worse for mixed models because variance is partitioned among levels of the random factor, so what is the error variance?
- Need a new formulation of R²:
 - Marginal R² = variance explained by fixed effects only

1.2. Pseudo-R²s. Generalized mixed models

 Conditional R² = variance explained by both the fixed and random effects

1.2. Pseudo-R²s. Generalized mixed models

- Comparison of marginal and conditional R² can lead to roundabout assessment of 'significance' of the random effects (e.g., if conditional R² is larger relative to marginal R²)
- Best to report both and allow readers to determine how their magnitude affects the inferences

1.2. GLMM Example

1.2. SEM Example. Shipley 2009

- Hypothetical dataset: predicting latitude effect on survival of a tree species
- Repeated measures on 5 subjects at 20 sites from 1970-2006
- Survival (0/1) influenced by phenology (degree days until bud break, Julian days until bud break), size (stem diameter growth)

1.2. SEM Example. Shipley 2009

- Two distributions: normal, binary (survival)
- Random effects:
 - Site-only: latitude
 - Site and year: degree days, date
 - Site, year, and subject: diameter, survival

1.2. SEM Example. What is the basis set?

- Date ⊥ Lat | (Degree days)
- Growth \perp Lat | (Date)
- Survival ⊥ Lat | (Growth)
- Growth ⊥ Degree days | (Date, Lat)
- Survival ⊥ Degree days | (Growth, Lat)
- Survival ⊥ Date | (Growth, Degree days)

1.2. SEM Example. List of equations


```
# Get summary
summary(shipley.sem)
Structural Equation Model of shipley.sem
Call:
 DD ~ lat
 Date ~ DD
 Growth ~ Date
 Live ~ Growth
   AIC
21745.782
```



```
Tests of directed separation:
      Independ.Claim Test.Type
                                DF Crit.Value P.Value
    Date ~ lat + ...
                         coef
                                18
                                      -0.0798 0.9373
 Growth ~ lat + ...
                         coef
                                18
                                      -0.8929 0.3837
                         coef 1431
    Live ~ lat + ...
                                      1.0280 0.3039
                         coef 1329
  Growth ~ DD + ...
                                      -0.2967 0.7667
                         coef 1431
     Live ~ DD + ...
                                     1.0046 0.3151
                         coef 1431
                                      -1.5617 0.1184
   Live ~ Date + ...
Global goodness-of-fit:
Chi-Squared = NA with P-value = NA and on 6 degrees of freedom
Fisher's C = 11.536 with P-value = 0.484 and on 12 degrees of freedom
Warning message:
Check model convergence: log-likelihood estimates lead to negative Chi-squared!
```


- Re-specify random structure
- Still no positive χ^2 statistic \odot
- Consider other distributions (e.g., negative binomial)
- Revert to d-sep test


```
Coefficients:
  Response Predictor Estimate Std.Error
                                         DF Crit. Value P. Value Std. Estimate
                 lat
                      -0.8355 0.1194
                                         18
                                                -6.9960
       DD
                                                              0
                                                                     -0.6877 ***
                     -0.4976 0.0049 1330 -100.8757
                                                                     -0.6281 ***
                 DD
      Date
                                                                       0.3824 ***
   Growth
                    0.3007
                                0.0266 1330
                                               11.2.917
                Date
                                                              0
                                                 5.9552
                                                                      0.7866 ***
             Growth
                    0.3479
                                0.0584 1431
      Live
                 0 '***' 0.001 '**' 0.01 '*' 0.05
  Signif. codes:
Individual R-squared:
  Response method Marginal Conditional
                     0.49
       DD
            none
                                 0.70
                                 0.98
      Date
                     0.41
            none
                   0.11
   Growth
            none
                                 0.84
                     0.16
      Live
           delta
                                 0.18
```

1.2. SEM Example. Populate final model


```
Coefficients:
  Response Predictor Estimate Std.Error
                                          DF Crit. Value P. Value Std. Estimate
                 lat
                      -0.8355
                                0.1194
                                          18
                                                -6.9960
        DD
                                                              0
                                                                      -0.6877 ***
                                0.0049 1330 -100.8757
                      -0.4976
                                                                      -0.6281 ***
      Date
                  DD
                                                                       0.3824 ***
    Growth
                     0.3007
                                 0.0266 1330
                                                11.2.917
                Date
                                                               0
                                                                      0.7866 ***
              Growth
                       0.3479
                                 0.0584 1431
                                                 5.9552
      Live
                  0 '***' 0.001 '**' 0.01 '*' 0.05
  Signif. codes:
Individual R-squared:
```

Response method Marginal Conditional 0.49 DD none 0.70 0.98 0.41 Date none Growth none 0.11 0.84 0.16 Live delta 0.18

1.2. SEM Example. Refit using lavaan

1.2. SEM Example. Compare these models

1.2. SEM Example. Compare these models

1.2. SEM Example. Compare these models (d-sep)

Yvon-Durocher et al (2015): Experimental warming on phytoplankton diversity and biomass

ACTIVITY. Fit Durocher dataset

1.2. SEM Example. Your turn...

1.2. SEM Example. Your turn...

- Try removing incomplete cases first: complete.cases
 - What is their mistake here?
- Methods state: "with multiple measurements of variables made seasonally, nested within replicate mesocosms," but then, "a path model as a set of hierarchical linear mixed effects models, each of which included hypothesized relationships between a response variable and a set of predictors as fixed effects and mesocosm ID as a random effect on the intercept."
 - Play with the random structure?
- What about by treatment (Ambient vs. Heated)?
- Can anyone reproduce this result? Is it time to write a response?

1.3. GAM Example

1.3. Generate example data

 Example data from appendix of Shipley and Douma using a mix of non-normal and non-linear variables

```
# Generate data from paper
set.seed(100)
n <- 100
x1 <- rchisq(n, 7)
mu2 <- 10*x1/(5 + x1)
x2 <- rnorm(n, mu2, 1)
x2[x2 <= 0] <- 0.1
x3 <- rpois(n, lambda = (0.5*x2))
x4 <- rpois(n, lambda = (0.5*x2))
p.x5 <- exp(-0.5*x3 + 0.5*x4)/(1 + exp(-0.5*x3 + 0.5*x4))
x5 <- rbinom(n, size = 1, prob = p.x5)
dat2 <- data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = x5)</pre>
```


1.3. Fit this SEM using 'lm' and get GoF

1.3. Fit this SEM using 'lm' and get GoF


```
LLchisq(shipley_psem2)
Chisq df P.Value
1 4.143 5 0.529
```

1.3. Fit using GAM and GLM


```
shipley_psem3 <- psem(
  gam(x2 ~ s(x1), data = dat2, family = gaussian),
  glm(x3 ~ x2, data = dat2, family = poisson),
  gam(x4 ~ x2, data = dat2, family = poisson),
  glm(x5 ~ x3 + x4, data = dat2, family = binomial)
)</pre>
```


1.3. Fit using GAM and GLM


```
# Get goodness-of-fit
LLchisq(shipley_psem2)
   Chisq df P.Value
1 4.143 5 0.529
```


1.3. Fit using GAM and GLM


```
# Compare linear and non-linear models
AIC(shipley_psem2, shipley_psem3)
```

AIC K n 1 1240.20 13.000 100 2 1190.75 11.563 100

1.3. Truly Non-Linear Implementations

- Possible to compare models with the same typology but different ML fitting functions and forms (or nested models)
- Do not get coefficients returned by `coefs` because smoothed terms are non-linear functions
- How to present this path diagram????

1.3. Truly Non-Linear Implementations

- Piecewise SEM can be extended to many different model types: as long as you can get a P-value or compute a log-likelihood, you can estimate fit
 - Matrix regression (Barnes et al. 2016)
 - Spatially-explicit models