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1.1 Traditional vs. 
Piecewise SEM



1.1 Comparison. Traditional vs. piecewise SEM

Variance-covariance Piecewise

Single (global) variance-covariance 
matrix estimated

Variance-covariance matrices 
estimated for each endogenous 
variable

Simultaneous solution 
(computationally intensive)

Multiple solutions (modularized)

Fit to normal distribution Incorporates various distributions 
(Poisson, Gamma, etc.)

Assumes independence Can model non-independence 
(blocked, temporal, spatial, etc.)

Latent & composite variables No latent variables (yet*)

Recursive & non-recursive (cyclic) Only for recursive (acyclic)

Multi-group models Can estimate random 
components, but no formal χ2 test



1.1 Comparison. Traditional vs. piecewise SEM

Traditional SEM Piecewise SEM



1.1 Piecewise SEM.

Build a 
hypothesized 
causal model

Collect data
Challenge 

model with 
data

Assess fit

Estimate 
coefficients

Draw 
inference

Poor fit

Adequate fit



1.2 Tests of Directed 
Separation



1.2 Directed Separation. Model fit

Does the model fit the data?

=

Does the model represent the data well?

=

Are we missing important information?



1.2 Directed Separation. Model fit

x y3

y2

y1

Did we get the topology right or are there unrecognized 
significant relationships?



1.2 Directed Separation. D-separation

x y3

y2

y1

• Concept from Graph 
Theory

• Two nodes are d-
separated if they are 
conditionally 
independent e.g., the 
effect of x on y3 is zero 
conditioning on the 
influences of y1 and y2



1.2 Directed Separation. Independence claims

The d-separation criterion for any pair of variables 
involves: 

1. Directly controlling for causal connections via 
immediate parents 

2. Indirectly controlling for common ancestors that 
could generate correlations between the pair (as 
reflected in immediate parents)

3. Not controlling for common descendent variables 
(the effect of the cause)



1.2 Directed Separation. D-separation

x y3

y2

y1

Test of directed separation:

1. Identify all conditional
independence claims

2. Evaluate each 
independence claim

3. Summarize information 
across all claims



1.2 Directed Separation. Independence claims

x y3

y2

y1

1. Identify all 
independence claims

Basis set = the smallest
possible set of 
independence claims from 
a graph

Notation:
x ⏊ y3 | (y1, y2)

Predictor involved in claim Response Conditioning variables



1.2 Directed Separation. Independence claims

x y3

y2

y1

1. Identify all 
independence claims

1. x ⏊ y3 | (y1, y2)

2. y3 ⏊ x| (y1, y2)

3. y1 ⏊ y2 | (x)

4. y2 ⏊ y1 | (x)

“Minimum set” = reciprocal relationships are not part of the 
basis set (P-values are identical in either direction, EXCEPT…)



1.2 Directed Separation. Deriving the basis set

What is the basis set?

1. mass ⏊ dia | (canopy)

2. mass ⏊ # | (canopy)

3. mass ⏊ %| (canopy)

4. dia ⏊ # | (canopy)

5. dia ⏊ % | (canopy)

6. % ⏊ # | (canopy)



1.2 Directed Separation. Deriving the basis set

What is the basis set?

1. dia ⏊ # | (canopy)

2. dia ⏊ % | (canopy, #)

3. canopy⏊ mass | (dia)

4. mass ⏊ #| (dia, canopy)

5. mass ⏊ % | (dia, #)

6. canopy ⏊ % | (#)



1.2 Directed Separation. Deriving the basis set

What is the basis set?

ε

pesticide

Epiphytesmacroalgae eelgrass

Caprellids Gammarids

εε

1. Pesticide ⏊ epiphytes 
(macroalgae, 
eelgrass, caprellids, 
gammarids)

2. Caprellids ⏊
gammarids 
(macroalage, 
eelgrass, pesticide)



1.2 Directed Separation. Independence claims

x y3

y2

y1

1. Identify all 
independence claims

1. x ⏊ y3 | (y1, y2)

2. y1 ⏊ y2 | (x)

3. y4 ⏊ y1 | (x)

4. y4 ⏊ y3 | (y1, y2)

5. y4 ⏊ x???
y4

Not 
conditioning 
on y4, since 
its >1 node 
away 



1.2 Directed Separation. A note

• Basis set excludes relationships among exogenous 
variables

x1

x2

y1 y2

1. x1 ⏊ y2 | (y1)
2. x2 ⏊ y2 | (y1)
3. x1 ⏊ x2



1.2 Directed Separation. A note

• Unclear as to the direction of the relationship (x1 -> x2 or x2 -> x1)

• Unclear whether variables could even be plausibly causally linked 
(e.g., ocean basin and latitude)

• Distributional assumptions, etc. not defined

x1

x2

y1 y2

1. x1 ⏊ y2 | (y1)
2. x2 ⏊ y2 | (y1)
3. x1 ⏊ x2



1.2 Directed Separation. A note

• Basis set generally excludes non-linear components 
(polynomials)

x

x2

y1 y2

1. x ⏊ y2 | (y1)
2. x2 ⏊ y2 | (y1)



1.2 Directed Separation. A note

• Basis set generally excludes non-linear components 
(interactions) 

x1

x2

y1 y2

1. x1 ⏊ y2 | (y1)
2. x2 ⏊ y2 | (y1)
3. x1 * x2 ⏊ y2 | (y1)



ACTIVITY

• Take your causal diagram from Day 1

• Derive the basis set



1.2 Directed Separation. D-separation

x y3

y2

y1

Test of directed separation:

1. Identify all 
independence claims

2. Evaluate each 
independence claim

3. Summarize information 
across all claims



1.2 Directed Separation. D-separation

x y3

y2

y1

Test of directed separation:

1. x ⏊ y3 | (y1, y2)

y3 ~ y1 + y2 + x 

1. y1 ⏊ y2 | (x)

y2 ~ x + y1

• Fit models (using same parameters as originally specified) 
and extract null significance statistic: P-value)

• A non-significant P-value suggests the claim is conditionally 
independent (i.e., relationship is no different than 0)



1.2 Directed Separation. D-separation

x y3

y2

y1

Test of directed separation:

1. Identify all 
independence claims

2. Evaluate each 
independence claim

3. Summarize 
information across all 
claims



1.2 Directed Separation. Fisher’s C

• Summarize independence claims across basis set:

C = -2*∑ln(pi)

pi = the P-values of all tests of conditional independence

• C has a c2-square distribution with 2k degrees of freedom

• k = # of elements of the basis set



1.2 Directed Separation. Fisher’s C

What is p < 0.05?

• You are likely missing some associations

• You reject this model

• The way forward: adding links or different model 
structure? (look at d-sep tests)

• To re-iterate, p ≥ 0.05 is GOOD



1.2 Directed Separation. Model selection

• Fisher’s C can be used to construct model AIC:

AIC = C + 2K

• K = # of likelihood parameters estimated (not to be confused 
with k)

• Can be extended to small sample size: 

AICc = C + 2K(n / (n – K – 1))



1.2 Directed Separation. Complexity and sample size

• Shipley suggests need only enough individual degrees of 
freedom to fit each component model

• Or, d-rule (Grace et al 2015):
• d = # of samples / # of pathways
• d ≥ 5

• More is always better…
• Low sample size leads to non-significant d-sep tests
• Low sample size also leads to non-significant path 

coefficients
• End up with a ‘good fitting’ model that says nothing



1.2 Directed Separation. Saturated models

y3

y2

y1

What is the basis set?

• There is no basis set for a saturated model (all paths are 
represented)

• No d-sep tests and therefore no C statistic can be 
constructed for this model (same as global estimation)



1.2 Directed Separation. Saturated models

y3

y2

y1

What is the basis set?

Options:
1. Remove the mediating variable y2 and test submodel
2. Rely on other indicators of model fit (e.g., path 

significance, R2)

A global test is not the be all-end all of models



1.3 Log-likelihood 
assessment



1.3. Model fit

Does the model fit the data?

=

Does the model represent the data well?

=

Are there more likely configurations?



1.3. Directed separation. The trouble with P-values

• P-values are not always returned by default (see: lme4)

• D-sep tests only reflect changes in topology (whether 
paths or variables are missing), but there are lots of 
components to tweak (distributions, transformations, 
link functions, etc.) that don’t affect the topology



1.3. Log-likelihood 

• Recall: Maximum likelihood estimation = find the 
parameters (coefficients) that maximize the probability 
of observing the data

• Likelihood = value of the maximum likelihood fitting 
function with the optimal parameters 

• Log-likelihood (L-L) = the log-transformation of the 
likelihood



1.3. Log-likelihood 

x y3

y2

y1

Can compute L-L for each 
model in our SEM:

y1 ~ γ1x

y2 ~ γ2x

y3 ~ β1y1 + β2y1



1.3. Log-likelihood 

x y3

y2

y1

• Recall the goal of d-sep
tests are to evaluate 
missing paths = same as 
asking if the paths are 
no different than 0

• What is the alternate 
hypothesis? That these 
paths are different from 
zero



1.3. Log-likelihood. Competing models

x y3

y2

y1

x y3

y2

y1

Proposed causal model Saturated modelVS



1.3. Log-likelihood. Competing models 

x y3

y2

y1

x y3

y2

y1

Proposed causal model Saturated model

0

0

(this is also what we test in global estimation… is the 
difference in the estimated and observed covariances zero?)

VS



1.3. Log-likelihood. Competing models 

x y3

y2

y1

x y3

y2

y1

Proposed causal model Saturated model

0

0

How much more likely is the model in which all paths are 
free to vary (saturated model) then the proposed model?

VS



1.3. Log-likelihood. LRT

x y3

y2

y1

Log-likelihood test:

1. Fit proposed model and 
summarize log-
likelihoods

2. Fit saturated model 
and summarize log-
likelihoods

3. Test whether they are 
different



1.3. Log-likelihood. LRT

x y3

y2

y1

Log-likelihood test:

1. Fit proposed model 
and summarize log-
likelihoods

Log-likelihood of SEM is the 
sum of the individual log-
likelihoods

log ℒ𝑀 𝜃𝑀 𝑋) = ෍

𝑖=1

𝑣

log(ℒ𝑖 𝜃𝑖 𝑋))



1.3. Log-likelihood. LRT

x y3

y2

y1

Log-likelihood test:

1. Fit proposed model and 
summarize log-
likelihoods

2. Fit saturated model 
and summarize log-
likelihoods

3. Test whether they are 
different

log ℒ𝑀 𝜃𝑀 𝑋) = ෍

𝑖=1

𝑣

log(ℒ𝑖 𝜃𝑖 𝑋))



1.3. Log-likelihood. LRT

x y3

y2

y1

Log-likelihood test:

1. Fit proposed model and 
summarize log-
likelihoods

2. Fit saturated model 
and summarize log-
likelihoods

3. Test whether they are 
different = χ2 likelihood 
ratio test

𝜒2 = −2(log(ℒ 𝑀1 ) − log(ℒ 𝑀2 ))



1.3. Log-likelihood. Goodness-of-fit 

• χ2 statistic is the same as we get from global estimation if
we assume multivariate normality

• LRT requires that proposed model be nested within the 
saturated model

• Allows extensions of techniques from global estimation 
(e.g., modification indices = how much does χ2 likelihood 
change with additional removal of paths?)

• Can be extended to any model that uses ML estimation 
(e.g., GAMs) that were previously prohibited

• Cannot be used with techniques that are not estimated 
using maximum likelihood (e.g., quasi-likelihood) 



1.3. Log-likelihood. Model comparison

• Can extend likelihood summing concept to compute 
model-wide AIC from submodel AICs:

• Can be extended to small sample size correction

• Solves issue with lack of AIC from d-sep tests for 
saturated models

𝐴𝐼𝐶𝑀 =෍

𝑖=1

𝑣

𝐴𝐼𝐶𝑖



1.3. Log-likelihood. Issues

• If model does not converge or random effects are close 
to 0, then can produce wonky log-likelihood estimates

• This can lead to the impossible situation where χ2 < 0
• In this case , you will get an NA for χ2 statistic 

• What to do?
• Re-fit model and tweak optimization parameters to 

encourage convergence
• Drop random effects whose variance components 

are very small from the model
• Revert to d-sep tests



1.4 Introduction to 
piecewiseSEM

Local_Estimation.R



1.4 piecewiseSEM. 

piecewiseSEM: Piecewise structural equation modeling 
in R for ecology, evolution, and systematics

install.packages("devtools")
library(devtools)
install_github("jslefche/piecewiseSEM@devel")

When you see this, time to code along!



51

Mediation in Analysis of Post-Fire Recovery of 
Plant Communities in California Shrublands

Five year study of wildfires in Southern California in 1993. 
90 plots (20 x 50m)



1.4 piecewiseSEM.  Keeley example

Distance Richness

Hetero

Abiotic

1. Create list of 
structured 
equations

2. Conduct d-sep
tests (evaluate fit)

3. Construct χ2 from 
log-likelihoods

4. Extract 
coefficients



1.4 piecewiseSEM.  Keeley example

Distance Richness

Hetero

Abiotic

Break this model up into component models



1.4 piecewiseSEM.  Store list of equations

distance rich

hetero

abiotic

# Read in data
data(keeley)

# Create list of structured equations
keeley.sem <- psem(
lm(abiotic ~ distance, data = keeley),
lm(hetero ~ distance, data = keeley),
lm(rich ~ abiotic + hetero, data = keeley),
data = keeley

)



1.4 piecewiseSEM.  Store list of equations

keeley.sem

Structural Equations of x :
lm: abiotic ~ distance
lm: hetero ~ distance
lm: rich ~ abiotic + hetero

Data:
distance elev abiotic age   hetero firesev cover rich

1 53.40900 1225 60.67103  40 0.757065    3.50 1.0387974   51
2 37.03745   60 40.94291  25 0.491340    4.05 0.4775924   31
3 53.69565  200 50.98805  15 0.844485    2.60 0.9489357   71
4 53.69565  200 61.15633  15 0.690847    2.90 1.1949002   64
5 51.95985  970 46.66807  23 0.545628    4.30 1.2981890   68
6 51.95985  970 39.82357  24 0.652895    4.00 1.1734866   34
...with  84  more rows

[1] "class(psem)"



1.4 piecewiseSEM.  D-sep tests

distance rich

hetero

abiotic

# Get the basis set
basisSet(keeley.sem)

$`1`
[1] "distance | rich ( abiotic, hetero )"

$`2`
[1] "abiotic | hetero ( distance )"



1.4 piecewiseSEM.  D-sep tests

# Conduct d-sep tests
claim1 <- lm(rich ~ distance + abiotic + hetero, keeley)

coefs(claim1)

Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
1     rich  distance   0.6404    0.1565 86     1.0933  0.0001       0.3743 ***
2     rich   abiotic   0.5233    0.1756 86     2.9793  0.0038       0.2660  **
3     rich    hetero  33.4010   11.1187 86     3.0040  0.0035       0.2539  **

claim2 <- lm(hetero ~ abiotic + distance, keeley)

coefs(claim2)

Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
1   hetero   abiotic   0.0022    0.0017 87     1.4296  0.1871       0.1491  
2   hetero  distance   0.0036    0.0015 87     2.4742  0.0153       0.2774 *

# Compute Fisher’s C & compare to Chi-square distribution
C <- -2 * (log(coefs(claim1)[1, 7]) + log(coefs(claim2)[1, 7]))

1 - pchisq(C, 2 * 2)

[1] 0.0002223955



1.4 piecewiseSEM.  D-sep tests

# Magically conduct d-sep tests
(keeley.dsep <- dSep(keeley.sem))

# By default the conditioning variables are hidden, but we can show 
them
dSep(keeley.sem, conditioning = TRUE)

Independ.Claim Test.Type DF Crit.Value P.Value
1 rich ~ distance + abiotic + hetero      coef 86   4.093329 9.564005e-05 ***
2        hetero ~ abiotic + distance      coef 87   1.329585 1.871306e-01 



1.4 piecewiseSEM.  Re-assess fit

distance rich

hetero

abiotic

# Add significant path back into model
keeley.sem2 <- update(keeley.sem, rich ~ abiotic + hetero + distance)

dSep(keeley.sem2)

fisherC(keeley.sem2)



1.4 piecewiseSEM.  Re-assess fit

distance rich

hetero

abiotic

Independ.Claim Estimate   Std.Error DF Crit.Value P.Value
1 hetero  ~  abiotic + ... 0.002229248 0.001676649 87   1.429585 0.1871306 

Fisher.C df P.Value
1    3.352  2   0.187



1.4 piecewiseSEM.  Log-likelihood fit

distance rich

hetero

abiotic

# Get log-likelihoods from original model
(M1 <- sapply(keeley.sem2, function(x) ifelse(class(x) == "data.frame", 
NA, logLik(x))))

data 
-299.9828   73.3324 -342.9844        NA 

# Sum L-Ls
(M1 <- sum(M1, na.rm = TRUE))
[1] -569.6348



1.4 piecewiseSEM.  Log-likelihood fit

distance rich

hetero

abiotic

# Fit saturated model (add all missing paths)
Keeley.sem3 <- update(keeley.sem2, hetero ~ abiotic + distance)



1.4 piecewiseSEM.  Log-likelihood fit

distance rich

hetero

abiotic

# Get log-likelihoods from saturated model 
(M2 <- sapply(keeley.sem3, function(x) ifelse(class(x) == "data.frame", 
NA, logLik(x))))

data 
-299.98277   74.23761 -342.98438         NA

# Sum L-Ls
(M2 <- sum(M2, na.rm = TRUE))
[1] -568.7295



1.4 piecewiseSEM.  Log-likelihood fit

distance rich

hetero

abiotic

# Compute chi-squared statistic
Chi.sq <- -2*(M1 - M2)

# Compare to chi-squared distribution with 1 d.f. (one additional 
estimated parameter in saturated model)
1 - pchisq(Chi.sq, 1)

[1] 0.1784574



1.4 piecewiseSEM.  Log-likelihood fit

distance rich

hetero

abiotic

# Auto-magic calculation!
LLchisq(keeley.sem2)

Chisq df P.Value
1  1.81  1   0.178



1.4 piecewiseSEM.  Log-likelihood fit

distance rich

hetero

abiotic

# Same P-value as from lavaan (chi-squared value too!)
model <- '
abiotic ~ distance
hetero ~ distance
rich ~ abiotic + hetero + distance
'

lavaan::lavInspect(lavaan::sem(model, keeley), "fit")["pvalue"]

pvalue
0.1784574 



1.4 piecewiseSEM.  Get coefficients

distance rich

hetero

abiotic

# Get coefficients
coefs(keeley.sem2)
Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate

1  abiotic  distance   0.3998    0.0823 88     1.8562  0.0000       0.4597 ***
2   hetero  distance   0.0045    0.0013 88     3.4593  0.0008       0.3460 ***
3     rich   abiotic   0.5233    0.1756 86     2.9793  0.0038       0.2660  **
4     rich    hetero  33.4010   11.1187 86     3.0040  0.0035       0.2539  **
5     rich  distance   0.6404    0.1565 86     1.0933  0.0001       0.3743 ***



1.4 piecewiseSEM.  Get coefficients

distance rich

hetero

abiotic

# Return intercepts as well
coefs(keeley.sem2, intercepts = T)

Response   Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
1  abiotic (Intercept)  29.5537    4.1176 88     7.1774  0.0000       0.0000 ***
2  abiotic    distance   0.3998    0.0823 88     4.8562  0.0000       0.4597 ***
3   hetero (Intercept)   0.4618    0.0650 88     7.0997  0.0000       0.0000 ***
4   hetero    distance   0.0045    0.0013 88     3.4593  0.0008       0.3460 ***
5     rich (Intercept) -30.8880    9.5340 86    -3.2398  0.0017       0.0000  **
6     rich     abiotic   0.5233    0.1756 86     2.9793  0.0038       0.2660  **
7     rich      hetero  33.4010   11.1187 86     3.0040  0.0035       0.2539  **
8     rich    distance   0.6404    0.1565 86     4.0933  0.0001       0.3743 ***



1.4 piecewiseSEM.  Get coefficients

distance rich

hetero

abiotic

# Get R-squared
rsquared(keeley.sem2)

Response   family     link method R.squared
1  abiotic gaussian identity     NA 0.2113455
2   hetero gaussian identity     NA 0.1197074
3     rich gaussian identity     NA 0.4700472



1.4 piecewiseSEM.  Summary

# Get all summary information
summary(keeley.sem2)

Structural Equation Model of keeley.sem2 

Call:
abiotic ~ distance
hetero ~ distance
rich ~ abiotic + hetero + distance

AIC
1161.270

---
Tests of directed separation:

Independ.Claim Test.Type DF Crit.Value P.Value
hetero ~ abiotic + ...      coef 87     1.3296  0.1871 

--
Global goodness-of-fit:

Chi-Squared = 1.81 with P-value = 0.178 and on 1 degrees of freedom
Fisher's C = 3.352 with P-value = 0.187 and on 2 degrees of freedom



1.4 piecewiseSEM.  Summary

---
Coefficients:

Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
abiotic  distance   0.3998    0.0823 88     4.8562  0.0000       0.4597 ***
hetero  distance   0.0045    0.0013 88     3.4593  0.0008       0.3460 ***
rich   abiotic   0.5233    0.1756 86     2.9793  0.0038       0.2660  **
rich    hetero  33.4010   11.1187 86     3.0040  0.0035       0.2539  **
rich  distance   0.6404    0.1565 86     4.0933  0.0001       0.3743 ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05

---
Individual R-squared:

Response method R.squared
abiotic   none      0.21
hetero   none      0.12
rich   none      0.47



1.4 piecewiseSEM.  Summary

distance rich

hetero

abiotic

R2 = 0.21

R2 = 0.12

R2 = 0.47

0.46

0.35 0.26

0.27

0.37



1.4 piecewiseSEM.  Summary

# Use built-in plotting function based on `diagrammeR`
plot(keeley.sem2)



1.4 piecewiseSEM. Correlated errors

distance rich

hetero

abiotic

keeley.sem3 <- psem(
lm(abiotic ~ distance, data = keeley),
lm(hetero ~ distance, data = keeley),
lm(rich ~ distance + hetero, data = keeley),
rich %~~% abiotic # same syntax as lavaan

)

summary(keeley.sem3)



1.4 piecewiseSEM. Correlated errors

distance rich

hetero

abiotic

R2 = 0.21

R2 = 0.12

R2 = 0.42

0.46

0.35 0.29

0.30

0.48



1.4 piecewiseSEM. AIC comparisons

distance rich

hetero

abiotic

distance rich

hetero

abiotic



1.4 piecewiseSEM. AIC comparisons

distance rich

hetero

abiotic

distance rich

hetero

abiotic
0 0

abiotic ~ 1



1.4 piecewiseSEM. Fit new model

distance rich

hetero

abiotic

# Fit alternate model
keeley.sem4 <- psem(
lm(hetero ~ distance, data = keeley),
lm(rich ~ distance + hetero, data = keeley),
lm(abiotic ~ 1, data = keeley)

)



1.4 piecewiseSEM. Fit new model

distance rich

hetero

abiotic

# Compare the two models using AIC
AIC(keeley.sem2, keeley.sem4)
df      AIC

x 11 1161.270
y  9 1187.479



1.4 piecewiseSEM. AIC comparisons

distance rich

hetero

abiotic

distance rich

hetero

abiotic

AIC = 1161 

AIC = 1187



Distance Richness

Hetero

Abiotic

This is a 
Poisson-

distributed 
variable!

1.4 SEM Examples. Refit Keeley using GLM



1.4 SEM Examples. Refit Keeley using GLM

# Re-run Keeley with GLM for richness
keeley.glm.sem <- psem(
lm(abiotic ~ distance, data = keeley),
lm(hetero ~ distance, data = keeley),
glm(rich ~ abiotic + hetero + distance, family = "poisson", data = 

keeley),
keeley

)

summary(keeley.glm.sem)



distance rich

hetero

abiotic

R2 = 0.21

R2 = 0.12

R2 = 0.47

0.46

0.35 0.26

0.27

0.37

1.4 SEM Examples. Refit Keeley using GLM

distance rich

hetero

abiotic

R2 = 0.21

R2 = 0.12

R2 = 0.89

0.46

0.35 0.26

0.24

0.38

AIC = 1220.7

AIC = 1161.3



1.4 piecewiseSEM. Partial regression coefficient

Isolate the independent effect of distance on richness:

1. Regress abiotic and hetero against richness 
(removing distance)

2. Regress distance against abiotic and hetero (remove 
rich)

3. Regression residuals of 1 against 2 (having removed 
effects of abiotic and hetero from both)



1.4 piecewiseSEM. Partial regression coefficient



• Useful for displaying trends, particularly with 
complex models where bivariate correlations are 
messy

• Can be used for any multiple regression (single model 
or list)

• Not applicable to simple regression (Y ~ X) for 
obvious reasons

• Well implemented in emmeans package

1.4 piecewiseSEM. Partial regression coefficient



1.5 A Warning…



1.5 Directed Separation. A warning

• Intermediate non-normal endogenous variables 
pose a challenge

x y3

y2

y1



1.5 Directed Separation. A warning

• If normal, significance values are reciprocal

y2

y1

y2

y1

𝑃2,1 == 𝑃1,2



1.5 Directed Separation. A warning

set.seed(66)

data <- data.frame(x = rnorm(100), y1 = rnorm(100), y2 = rpois(100, 
10), y3 = rnorm(100))

# Show that y2 ~ y1 is the same as y2 ~ y1 for LM
mody1.y2 <- lm(y1 ~ y2 + x, data)

mody2.y1 <- lm(y2 ~ y1 + x, data)

summary(mody1.y2)$coefficients[2, 4]

[1] 0.7429784

summary(mody2.y1)$coefficients[2, 4]

[1] 0.7429784



𝑃2,1 ≠ 𝑃1,2

1.5 Directed Separation. A warning

• If non-normal, significance values are not reciprocal 
because of transformation via link function

y2

log(y1)

log(y2)

y1



1.5 Directed Separation. A warning

# Show that y2 ~ y1 is not the same as y2 ~ y1 for GLM
mody1.y2 <- lm(y1 ~ y2 + x, data)

mody2.y1.glm <- glm(y2 ~ y1 + x, "poisson", data)

summary(mody1.y2)$coefficients[2, 4]

[1] 0.7429784

summary(mody2.y1.glm)$coefficients[2, 4]

[1] 0.8036267



1.5 Directed Separation. A warning

# Same is true for log-likelihoods
logLik(mody1.y2)
'log Lik.' -128.1663 (df=4)

logLik(mody2.y1.glm)
'log Lik.' -239.3152 (df=3)

# Because of differences in ML-fitting function for Gaussian vs. 
Poisson GLM



1.5 Directed Separation. A warning

x y3

y*2

y1

# Create SEM with GLM
modelList <- psem(
lm(y1 ~ x, data),
glm(y2 ~ x, "poisson", data),
lm(y3 ~ y1 + y2, data),
data

)



1.5 Directed Separation. A warning

# Run summary
summary(modelList)

Error: 
Non-linearities detected in the basis set where P-values are not symmetrical. 
This can bias the outcome of the tests of directed separation.

Offending independence claims: 
y2 <- y1 *OR* y2 -> y1 

Option 1: Specify directionality using argument 'direction = c()'.

Option 2: Remove path from the basis set by specifying as a correlated error using 
'%~~%'.

Option 3: Use argument 'conserve = TRUE' to compute both tests, and return the 
most conservative P-value. 



1.5 Directed Separation. A warning

# Address conflict using conserve = T
summary(modelList, conserve = T)

dSep(modelList, conserve = T)

Independ.Claim Estimate  Std.Error DF Crit.Value P.Value
1   y3 ~ x + ... -0.01414678 0.09749775 96 -0.1450985 0.8849373 
3 y1 ~ y2 + ... -0.01161551 0.03532167 97 -0.3288495 0.7429784 

# Check against 
summary(mody1.y2)$coefficients[2, 4]

[1] 0.7429784

summary(mody2.y1.glm)$coefficients[2, 4]

[1] 0.8036267



1.5 Directed Separation. A warning

# Address conflict using direction = c()
dSep(modelList, direction = c("y2 <- y1"))

Independ.Claim Estimate  Std.Error DF Crit.Value P.Value
1   y3 ~ x + ... -0.01414678 0.09749775 96 -0.1450985 0.8849373 
2 y1 ~ y2 + ... -0.01161551 0.03532167 97 -0.3288495 0.7429784 

dSep(modelList, direction = c("y1 <- y2"))

Independ.Claim Estimate  Std.Error DF Crit.Value P.Value
1   y3 ~ x + ... -0.01414678 0.09749775 96 -0.1450985 0.8849373 
2  y2 ~ y1 + ... -0.00872099 0.03507248 97 -0.2486562 0.8036267 



1.5 Directed Separation. A warning

# Address conflict using correlated errors
modelList2 <- update(modelList, y2 %~~% y1)

dSep(modelList2)

Independ.Claim Estimate  Std.Error DF Crit.Value P.Value
1   y3 ~ x + ... -0.01414678 0.09749775 96 -0.1450985 0.8849373 
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