5. Path Coefficients

Covariances *are* correlations when variables are standardized (Z-transformed: subtract the mean and divide by the SD)

$$b_{xy} = \frac{COV_{xy}}{VAR_x} = \frac{r_{xy}}{1} = r_{xy}$$

When variables are standardized, the coefficient *is* the correlation for simple regressions

- Unstandardized coefficient = absolute strength of the pathway
 - "An 1 unit change in X results in some unit change in Y"
- Standardized coefficient = relative strength of the pathway
 - "A 1 standard deviation change in X results in some standard deviation change in Y"

$$b = B_{xy} * \frac{sd(x)}{sd(y)}$$

Unstandardized	Standardized
Good for prediction: coefficients are in raw units	Good for ranking: coefficients are in equivalent units
Has direct real world meaning	Less clear real world meaning
Can be compared across pathways or models that have identical units	Can be compared across all pathways in the same model or same population; CANNOT be compared across different statistical populations (different population-level variances)

We often use covariances to fit models, but standardized covariances – i.e. correlations – for interpretation.

Raw Covariance Matrix

Standardized Covariance Matrix


```
# Generate random data
set.seed(1)
data <- data.frame(x1 = rnorm(100))
data$x2 <- data$x1 + runif(100, 0, 3)
data$y1 <- data$x2 + runif(100, 0, 6)
data y2 < - data x2 + runif(100, 0, 9)
# Standardized coefficients: Bxy * sd(x) / sd(y)
mod \leftarrow lm(y2 \sim y1, data)
# `coefs` returns the coefficient table (both standardized and
unstandardized)
piecewiseSEM::coefs(mod)
  Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
           y1 0.3433 0.1294 98 2.6528 0.0093
                                                              0.2588 **
       y2
```

```
# `unstdCoefs` and `stdCoefs` return unrounded coefficients
stdCoefs(mod)
 Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
       y2 y1 0.3432863 0.1294042 98 2.652821 0.009312599
                                                               0.2588427
BetaStd <- stdCoefs(mod)$Estimate * sd(data$y1) / sd(data$y2)</pre>
# Compare manually standardized to automatically standardized output
BetaStd: stdCoefs(mod)$Std.Estimate
[1] 0.2588427
Γ11 0.2588427
```

```
# The same as scaling the data beforehand and retrieving the raw
coefficients
data.scaled <- as.data.frame(apply(data, 2, scale))</pre>
mod2 <- lm(y2 ~ y1, data.scaled)</pre>
stdCoefs(mod2) # Estimate and Std.Estimate are the same
 Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
       y2 y1 0.2588427 0.0975726 98 2.652821 0.009312599
                                                               0.2588427
```

5. Coefficients.

The 8 Rules of Path Coefficients

First Rule of Path Coefficients: path coefficients for unanalyzed relationships (double-headed arrows) between exogenous variables are simply the correlations (standardized form) or covariances (unstandardized form)

	<i>x</i> ₁	<i>X</i> ₂	<i>y</i> ₁
x ₁	1.0		-
<i>X</i> ₂	0.76	1.0	
<i>y</i> ₁	0.44	0.63	1.0

Second Rule of Path Coefficients: when variables are connected by a *single* causal path, the (standardized) path coefficient is simply the correlation coefficient

$$y_1 = 0.44$$
 $y_1 = 0.26$ $y_2 = 0.26$

```
cor(data[, -2])
# Path 1
mody1.x1 \leftarrow lm(y1 \sim x1, data)
stdCoefs(mody1.x1)$Std.Estimate; cor(data[, c("y1", "x1")])[2, 1]
[1] 0.4400536
[1] 0.4400536
# Path 2
mody2.y1 \leftarrow lm(y2 \sim y1, data)
stdCoefs(mody2.y1)$Std.Estimate; cor(data[, c("y2", "y1")])[2, 1]
[1] 0.2588427
   0.2588427
```

Third Rule of Path Coefficients: strength of a compound path is the product of the (standardized) coefficients along the path.

If the indirect path from x_1 to y_2 equals the correlation between x_1 and y_2 , we say x_1 and y_2 are conditionally independent.


```
stdCoefs(mody1.x1)$Std.Estimate * stdCoefs(mody2.y1)$Std.Estimate;
cor(data[, c("y2", "x1")])[2, 1]

[1] 0.1139046
[1] 0.3138744

# Wait a minute...!
```

What does it mean when two separated variables are *not* conditionally independent?

0.44 * 0.26 = 0.11, which is <u>not equal</u> to 0.31

	<i>X</i> ₁	<i>y</i> ₁	<i>y</i> ₂
x ₁	1.0		-
<i>y</i> ₁	0.44	1.0	
<i>y</i> ₂	0.31	0.26	1.0

The inequality implies that the true model is:

Fourth Rule of Path Coefficients: when variables are connected by more than one causal pathway, the path coefficients are "partial" regression coefficients.

$$\gamma_{21} = \frac{r_{x_1 y_2} - (r_{x_1 y_1} \times r_{y_1 y_2})}{1 - r_{x_1 y_1}^2}$$

	<i>X</i> ₁	<i>y</i> ₁	<i>y</i> ₂
x ₁	1.0		-
<i>y</i> ₁	0.44	1.0	
<i>y</i> ₂	0.31	0.26	1.0

$$\beta_{12} = \frac{(0.31 - (0.26 * 0.44))}{1 - 0.44^2} = 0.25$$

$$0.44$$

$$y_1$$

$$y_2$$

$$\beta_{12} = \frac{(0.31 - (0.26 * 0.44))}{1 - 0.44^2} = 0.25$$

$$0.44$$

$$y_1$$

$$y_2$$

```
# Path 1
mody2.x1 <- lm(y2 ~ y1 + x1, data)

Gamma.y2.x1 <- (cor(data$y2, data$x1) - (cor(data$y2, data$y1) *
cor(data$y1, data$x1))) /
   (1 - cor(data$y1, data$x1) ^ 2)

stdCoefs(mody2.x1)[2, 8]; Gamma.y2.x1

[1] 0.2479929
[1] 0.2479929</pre>
```


$$\gamma_{21} = \frac{(0.26 - (0.44 * 0.31))}{1 - 0.44^2} = 0.15$$


```
# Path 2
Gamma.y2.y1 <- (cor(data$y2, data$y1) - (cor(data$y2, data$x1) *
cor(data$y1, data$x1))) /
   (1 - cor(data$y1, data$x1) ^ 2)

stdCoefs(mody2.x1)[1, 8]; Gamma.y2.y1

[1] 0.1497125
[1] 0.1497125</pre>
```

5. Coefficients. Statistical control

The effect of y_1 on y_2 is controlled for the joint effects of x_1 .

With all other variables in model held to their means, how much does a response variable change when a predictor is varied?

Fifth Rule of Path Coefficients: paths from error variables represent prediction error (influences from other forces).


```
Zeta.y1 <- 1 - summary(mody1.x1)$r.squared
sqrt(Zeta.y1)
[1] 0.8979715
Zeta.y2 <- 1 - summary(mody2.x1)$r.squared
sqrt(Zeta.y2)
[1] 0.9398986</pre>
```


Sixth Rule of Path Coefficients: unanalyzed residual correlations between endogenous variables are partial correlations or covariances.


```
(pcor <- cor(
    # effect of x1 on y2
    resid(mody2.x1),
    # effect of x1 on y1
    resid(mody1.x1)
))
[1] 0.1415931</pre>
```



```
# Can also use function from piecewiseSEM
partialCorr(y1 %~~% y2, list(mody2.x1, mody1.x1))

Response Predictor Estimate Std.Error DF Crit.Value P.Value
1 ~~y1 ~~y2 0.1415931 NA 97 1.408723 0.9189427
```


Note that total correlation between y_1 and y_2 = 0.32 * 0.44 + 0.94 * 0.14 * 0.90 = 0.26

	<i>X</i> ₁	<i>y</i> ₁	<i>y</i> ₂
x ₁	1.0		
<i>y</i> ₁	0.44	1.0	
<i>y</i> ₂	0.31	0.26	1.0

Seventh Rule of Path Coefficients: <u>total effect</u> one variable has on another equals the sum of its direct and indirect effects.

Total Effects:

0.25 + 0.44 * 0.15 = 0.31

Eighth Rule of Path Coefficients: sum of all pathways between two variables (directed and undirected) equals the correlation.

Total Effects:

	<i>X</i> ₁	y ₁	<i>y</i> ₂
x ₁	1.0		
$\boldsymbol{y_1}$	0.44	1.0	
<i>y</i> ₂	0.31	0.26	1.0

0.25 + 0.44 * 0.15 = 0.31


```
mody2 <- lm(y2 ~ x1 + y1, data)

mody1 <- lm(y1 ~ x1, data)

Gamma.y2.x1 <- stdCoefs(mody2)$std.Estimate[1] +
(stdCoefs(mody1)$std.Estimate[1] * stdCoefs(mody2)$std.Estimate[2])

Gamma.y2.x1; cor(data$x1, data$y2)

[1] 0.3138744
[1] 0.3138744</pre>
```

Coefficients

JAMES BOND WILL RETURN

in

"ON HER MAJESTY'S SECRET SERVICE"

Another lecture...

