

Categorizing our SEMs

- 1. Categorical Predictors
- 2. Categorical Predictors and Model Comparison
- 3. Categorical Variables and Shutting the Backdoor

Multiple <u>Phragmites</u> Genotypes Across the US - Local environment should shape soil microbial communities - These communities should regulate ecosystem function

The Four Submodels bowen <- read.csv("../data/bowen.csv") ### # A categorical model div_mod <- lme(observed_otus ~ status, random =~ 1|Genotype, data = bowen, method = "ML") activity_mod <- lme(RNA.DNA ~ status + observed_otus, random =~ 1 | Genotype, data = bowen, method = "ML") c_mod <- lme(below.C ~ observed_otus + status, random =~ 1 | Genotype, data=bowen, method="ML") biomass_mod <- lme(abovebiomass_g ~ RNA.DNA + observed_otus + belowCN + status, random =~ 1 | Genotype, data = bowen, method="ML") method = "ML" for accurate estimates of fixed effects

bowen_mod <- psem(div_mod, activity_mod, c_mod, biomass_mod, data = bowen)</pre>

Categorizing our SEMs

- 1. Categorical Predictors
- 2. Categorical Predictors and Model Comparison
- 3. Categorical Variables and Shutting the Backdoor

Future Directions

- Shoring up Interaction Effects and coefs
- Plotting categorical variables and interactions
- Categorical endogenous variables will require implementation of multinomial logistic regression within piecewiseSEM (but you can implement by hand?)

Categorizing our SEMs

- 1. Categorical Predictors
- 2. Categorical Predictors and Model Comparison
- 3. Categorical Variables and Shutting the Backdoor

The Omitted Variable Bias Problem • We assume that sampling means that omitted variables Exogenous average to 0 Cause Omission produces downward bias in SE of coefficients But, if omitted variables are Effect Cause correlated causally with a predictor, they likely are not averaged out • This **will** bias your estimates - You will not know in what direction

AGH! I Forgot to Measure That • This happens to everyone Stuff you Haven't Measured • Sometimes, you know what you didn't measure – or COULDN'T measure

• Sometimes, you don't!

Solution #1: Fixed Effects Shut the Back Door! Site Plot Temperature Site now embodies all non-temperature site-level variation We adjust for site-temp relationship in snail piece of the model Temperature is now causal! Site coefs don't contain causal meaning

Problems with Fixed Effects Approach

- Ineffecient
 - Eats up DF for model pieces
 - Lots of sites and small n per site leads to trouble
- What if we want to partition out site variability not due to things correlated with site?
 - Is there a role for a site RE somehow

Group Mean Models

- Get the mean value of predictors at each site
- This encompasses variability due to site-level processes correlated with predictors
- Site RE is now uncorrelated site-level variability

- Site now embodies all non-temperature correlated site-level variation
- We adjust for correlated site-level effects
- Temperature is now causal!
- · Mean temp is everything correlated with temp at a site level
- It is not causal

Group Mean Centering

- Get the mean value of predictors at each site
- For each plot, subtract the site mean
- What remains is the plot temperature anomaly, or, group mean centered value

- Not really an SEM anymore...
- Site embodies all non-temperature correlated site-level variation
- We adjust for correlated site-level effects
- Temperature is now causal!

Does it Work: Results from a Simulation with 10 sites, n = 10/site

Model	Temperature Effect	SE Effect
Naive RE Model	-0.1485831	0.1087651
Fixed Effects Model	-0.2401346	0.1183225
Mundlak Device	-0.2401346	0.1176633
Group Mean Centered Model	-0.2401346	0.1176633

Common Uses of Categorical Fixed Effects, Group Means, and Group Mean Centering

- Great for nested data
- Great for longitudinal data
- Can have multiple groups (spatio-temporal, etc), and can extend conceptually to any structure
- Rich literature on this in Econometrics

Categorical Variables: Conclusions

- They are very useful!
- No reason not to include in piecewiseSEM
- Can help shut the back door to ensure causal identification
- But, as always, be careful of interpretation and how quickly they eat DF

